ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости нарисованы неравнобедренный треугольник ABC и вписанная в него окружность ω. Пользуясь только линейкой и проведя не более восьми линий, постройте на ω такие точки A′, B′, C′, что лучи B′C′, C′A′, A′B′ проходят через A, B, C соответственно. Решение |
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 114]
Пусть A – основание перпендикуляра, опущенного из центра
данной окружности на данную прямую l. На этой прямой взяты еще две
точки B и C так, что
На плоскости нарисованы неравнобедренный треугольник ABC и вписанная в него окружность ω. Пользуясь только линейкой и проведя не более восьми линий, постройте на ω такие точки A′, B′, C′, что лучи B′C′, C′A′, A′B′ проходят через A, B, C соответственно.
Попробуйте сформулировать и доказать аналогичную теорему в пространстве.
Пусть O – одна из точек пересечения окружностей ω1 и ω2. Окружность ω с центром O пересекает ω1 в точках A и B, а ω2 – в точках C и D. Пусть X – точка пересечения прямых AC и BD. Докажите, что все такие точки X лежат на одной прямой.
Дан треугольник ABC. Точка K – основание биссектрисы внешнего угла A. Точка M – середина дуги AC описанной окружности. Точка N выбрана на биссектрисе угла C так, что AN || BM. Докажите, что точки M, N и K лежат на одной прямой.
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 114] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|