Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 18 задач
Версия для печати
Убрать все задачи

По доске $n$×$n$ прошла ладья, побывав в каждой клетке один раз, причем каждый её ход был ровно на одну клетку. Клетки занумерованы от 1 до $n^2$ в порядке прохождения ладьи. Пусть $M$ – максимальная разность между номерами соседних (по стороне) клеток. Каково наименьшее возможное значение $M$?

Вниз   Решение


В треугольнике ABC угол A прямой, M – середина BC, AH – высота. Прямая, проходящая через точку M перпендикулярно AC, вторично пересекает описанную окружность треугольника AMC в точке P. Докажите, что отрезок BP делит отрезок AH пополам.

ВверхВниз   Решение


В равнобедренную трапецию ABCD  (BC || AD)  вписана окружность радиуса R, касающаяся основания AD в точке P и пересекающая отрезок BP в такой точке Q, что  PQ = 3BQ.  Найдите углы и площадь трапеции.

ВверхВниз   Решение


Автор: Фольклор

Даны два двузначных числа – X и Y. Известно, что X вдвое больше Y, одна цифра числа Y равна сумме, а другая – разности цифр числа X.
Найти эти числа.

ВверхВниз   Решение


Доказать: число делителей n не превосходит 2.

ВверхВниз   Решение


Имеются 13 гирь. Известно, что любые 12 из них можно так разложить на две чашки весов, по шесть на каждую, что наступит равновесие.
Докажите, что все гири имеют одну и ту же массу, если известно, что:
  а) масса каждой гири равна целому числу граммов;
  б) масса каждой гири равна рациональному числу граммов;
  в) масса каждой гири может быть равна любому действительному (неотрицательному) числу.

ВверхВниз   Решение


На высоте BD треугольника ABC взята такая точка E, что  ∠AEC = 90°.  Точки O1 и O2 – центры описанных окружностей треугольников AEB и CEB; F, L – середины отрезков AC и O1O2. Докажите, что точки L, E, F лежат на одной прямой.

ВверхВниз   Решение


На сторонах AD и CD параллелограмма ABCD с центром O отмечены такие точки P и Q соответственно, что  ∠AOP = ∠COQ = ∠ABC.
  а) Докажите, что  ∠ABP = ∠CBQ.
  б) Докажите, что прямые AQ и CP пересекаются на описанной окружности треугольника ABC.

ВверхВниз   Решение


С 1 сентября четыре школьника начали посещать кинотеатр. Первый бывал в нём каждый четвёртый день, второй – каждый пятый, третий – каждый шестой и четвёртый – каждый девятый. Когда второй раз все школьники встретятся в кинотеатре?

ВверхВниз   Решение


В треугольник вписан ромб со стороной m так, что одни угол у них общий, а противоположная вершина ромба лежит на стороне треугольника и делит эту сторону на отрезки, равные p и q. Найдите стороны треугольника.

ВверхВниз   Решение


Медианы AM и BE треугольника ABC пересекаются в точке O. Точки O, M, E, C лежат на одной окружности. Найдите AB, если BE = AM = 3.

ВверхВниз   Решение


Боковая сторона трапеции равна одному основанию и вдвое меньше другого.
Докажите, что вторая боковая сторона перпендикулярна одной из диагоналей трапеции.

ВверхВниз   Решение


Дан треугольник с углами 30°, 70° и 80°. Разрежьте его отрезком на два треугольника так, чтобы биссектриса одного из этих треугольников и медиана второго, проведённые из концов разрезающего отрезка, были параллельны друг другу.

ВверхВниз   Решение


На стороне AB квадрата ABCD взята точка E, а на стороне CD – точка F, причём  AE : EB = 1 : 2,  а  CF = FD.
Будут ли голубой и зелёный треугольники (см. рис.) подобны?

ВверхВниз   Решение


Вася нарисовал карандашом разбиение клетчатого прямоугольника на прямоугольники размером 3×1 (тримино), закрасил ручкой центральную клетку каждого из получившихся прямоугольников, после чего стер карандашные линии. Всегда ли можно восстановить исходное разбиение?

ВверхВниз   Решение


Докажите, что если в наборе целых чисел a1, ..., an хотя бы одно отлично от 0, то они имеют наибольший общий делитель.

ВверхВниз   Решение


В треугольнике ABC  AA0 и BB0 – медианы, AA1 и BB1 – высоты. Описанные окружности треугольников CA0B0 и CA1B1 вторично пересекаются в точке Mc. Аналогично определяются точки Ma, Mb. Докажите, что точки Ma, Mb, Mc лежат на одной прямой, а прямые AMa, BMb, CMc параллельны.

ВверхВниз   Решение


В окружности $\omega$, описанной около треугольника $ABC$, хорда $KL$ проходит через середину $M$ отрезка $AB$ и перпендикулярна ей. Некоторая окружность проходит через точки $L$ и $M$ и пересекает отрезок $CK$ в точках $P$ и $Q$ ($Q$ лежит на отрезке $KP$). Пусть $LQ$ пересекает описанную окружность треугольника $KMQ$ в точке $R$. Докажите, что четырехугольник $APBR$ вписанный.

Вверх   Решение

Задачи

Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 401]      



Задача 64725

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Признаки подобия ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 10,11

На сторонах AD и CD параллелограмма ABCD с центром O отмечены такие точки P и Q соответственно, что  ∠AOP = ∠COQ = ∠ABC.
  а) Докажите, что  ∠ABP = ∠CBQ.
  б) Докажите, что прямые AQ и CP пересекаются на описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 65989

Темы:   [ Тетраэдр (прочее) ]
[ Теорема о трех перпендикулярах ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Признаки перпендикулярности ]
Сложность: 4-
Классы: 10,11

Все грани треугольной пирамиды SABC – остроугольные треугольники. SX и SY – высоты граней ASВ и BSС. Известно, что четырёхугольник AXYC – вписанный. Докажите, что прямые AC и BS перпендикулярны.

Прислать комментарий     Решение

Задача 109609

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Теорема Паскаля ]
[ Симметрия помогает решить задачу ]
[ Хорды и секущие (прочее) ]
Сложность: 4-
Классы: 8,9

Автор: Гордон В.

Хорда CD окружности с центром O перпендикулярна ее диаметру AB, а хорда AE делит пополам радиус OC.
Докажите, что хорда DE делит пополам хорду BC.

Прислать комментарий     Решение

Задача 66687

Темы:   [ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 8,9,10,11

В окружности $\omega$, описанной около треугольника $ABC$, хорда $KL$ проходит через середину $M$ отрезка $AB$ и перпендикулярна ей. Некоторая окружность проходит через точки $L$ и $M$ и пересекает отрезок $CK$ в точках $P$ и $Q$ ($Q$ лежит на отрезке $KP$). Пусть $LQ$ пересекает описанную окружность треугольника $KMQ$ в точке $R$. Докажите, что четырехугольник $APBR$ вписанный.
Прислать комментарий     Решение


Задача 66248

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Пересекающиеся окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Радикальная ось ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9,10

Автор: Якубов А.

Четырёхугольник ABCD вписан в окружность ω с центром O, M1 и M2 – середины сторон AB и CD соответственно; Ω – описанная окружность треугольника OM1M2X1 и X2 – точки пересечения ω с Ω, а Y1 и Y2 – вторые точки пересечения описанных окружностей ω1 и ω2 треугольников CDM1 и ABM2 соответственно с Ω. Докажите, что  X1X2 || Y1Y2.

Прислать комментарий     Решение

Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .