Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Бесконечный коридор ширины 1 поворачивает под прямым углом. Докажите, что можно подобрать проволоку так, чтобы расстояние между ее концами больше 4, и чтобы ее можно было протащить через этот коридор.

Вниз   Решение


Пусть O, I – центры описанной и вписанной окружностей прямоугольного треугольника; R, r – радиусы этих окружностей; J – точка, симметричная вершине прямого угла относительно I. Найдите OJ.

ВверхВниз   Решение


Докажите, что в любом описанном около окружности многоугольнике найдутся три стороны, из которых можно составить треугольник.

ВверхВниз   Решение


Найдите диагональ и боковую сторону равнобедренной трапеции с основаниями 20 и 12, если известно, что центр её описанной окружности лежит на большем основании.

ВверхВниз   Решение


Постройте треугольник по высоте, основанию и медиане, проведённой к этому основанию.

ВверхВниз   Решение


В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа.
Докажите, что длина гипотенузы – нечётное число, а длины катетов имеют разную чётность.

ВверхВниз   Решение


Диагонали ромба ABCD пересекаются в точке O. Докажите, что точки пересечения биссектрис каждого из треугольников ABO, BCO, CDO и DAO являются вершинами квадрата.

ВверхВниз   Решение


Продолжите последовательность: 2, 6, 12, 20, 30, …

ВверхВниз   Решение


В трапеции ABCD даны основания  AD = 16  и  BC = 9.  На продолжении BC выбрана такая точка M, что  CM = 3,2.
В каком отношении прямая AM делит площадь трапеции ABCD?

ВверхВниз   Решение


Можно ли четыре раза рассадить девять человек за круглым столом так, чтобы никакие двое не сидели рядом более одного раза?

ВверхВниз   Решение


Дана линейка с делениями через 1 см. Проведите какую-нибудь прямую, перпендикулярную данной прямой.

ВверхВниз   Решение


Найти все такие двузначные числа , что при умножении на некоторое целое число получается число, предпоследняя цифра которого – 5.

ВверхВниз   Решение


Можно ли n раз рассадить  2n + 1  человека за круглым столом так, чтобы никакие двое не сидели рядом более одного раза, если  а)  n = 5;  б)  n = 10?

ВверхВниз   Решение


Восстановите  а) треугольник;  б) пятиугольник по серединам его сторон.

ВверхВниз   Решение


Окружность $\omega_{1}$ проходит через центр $O$ окружности $\omega_{2}$ и пересекает ее в точках $A$ и $B$. Окружность $\omega_{3}$ с центром в точке $A$ и радиусом $AB$ пересекает повторно окружности $\omega_{1}$ и $\omega_{2}$ в точках $C$ и $D$ (отличных от $B$). Докажите, что точки $C$, $O$, $D$ лежат на одной прямой.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 158]      



Задача 53413

Темы:   [ Свойства биссектрис, конкуррентность ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3
Классы: 8,9

Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке M, биссектрисы B1B2 и C1C2 треугольника AB1C1 пересекаются в точке N.
Докажите, что точки A, M и N лежат на одной прямой.

Прислать комментарий     Решение

Задача 53993

Темы:   [ Общая касательная к двум окружностям ]
[ Три точки, лежащие на одной прямой ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3
Классы: 8,9

Прямая, проходящая через центры двух окружностей называется их линией центров.
Докажите, что общие внешние (внутренние) касательные к двум окружностям пересекаются на линии центров этих окружностей.

Прислать комментарий     Решение

Задача 66770

Темы:   [ Пересекающиеся окружности ]
[ Три точки, лежащие на одной прямой ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 8,9,10,11

Окружность $\omega_{1}$ проходит через центр $O$ окружности $\omega_{2}$ и пересекает ее в точках $A$ и $B$. Окружность $\omega_{3}$ с центром в точке $A$ и радиусом $AB$ пересекает повторно окружности $\omega_{1}$ и $\omega_{2}$ в точках $C$ и $D$ (отличных от $B$). Докажите, что точки $C$, $O$, $D$ лежат на одной прямой.
Прислать комментарий     Решение


Задача 67087

Темы:   [ Описанные четырехугольники ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3
Классы: 8,9,10,11

Четырехугольник $ABCD$ описан около окружности с центром $I$. Точки $O_1$ и $O_2$ – центры описанных окружностей треугольников $AID$ и $CID$. Докажите, что центр описанной окружности треугольника $O_1IO_2$ лежит на биссектрисе угла $B$ четырехугольника.
Прислать комментарий     Решение


Задача 115574

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Три точки, лежащие на одной прямой ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

На катетах прямоугольного треугольника как на диаметрах построены окружности. Найдите их общую хорду, если катеты равны 3 и 4.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 158]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .