Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Сформулируйте и докажите признаки делимости на 2n и 5n.

Вниз   Решение


В треугольнике ABC даны углы B и C. Биссектриса угла A пересекает сторону BC в точке D, а описанную окружность треугольника ABC – в точке E.
Найдите отношение AE : DE.

ВверхВниз   Решение


Можно ли невыпуклый четырехугольник разрезать двумя прямыми на 6 частей?

ВверхВниз   Решение


Натуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с положительными разностями  d1, d2, d3, ... .  Может ли случиться, что при этом сумма   1/d1 + 1/d2 + ... + 1/dk   не превышает 0,9? Рассмотрите случаи:
  а) общее число прогрессий конечно;
  б) прогрессий бесконечное число (в этом случае условие нужно понимать в том смысле, что сумма любого конечного числа слагаемых из бесконечной суммы не превышает 0,9).

ВверхВниз   Решение


Середина одной из диагоналей выпуклого четырёхугольника соединена с концами другой диагонали. Докажите, что полученная ломаная делит четырёхугольник на две равновеликие части.

ВверхВниз   Решение


Известно, что  cos α° = 1/3.  Является ли α рациональным числом?

ВверхВниз   Решение


В некоторой стране 100 аэродромов, причём все попарные расстояния между ними различны. С каждого аэродрома поднимается самолет и летит на ближайший к нему аэродром.
Докажите, что ни на один аэродром не может прилететь больше пяти самолетов.

ВверхВниз   Решение


а) Назовите 10 первых натуральных чисел, имеющих нечётное число делителей (в число делителей включается единица и само число).

б) Попробуйте сформулировать и доказать правило, позволяющее найти следующие такие числа.

ВверхВниз   Решение


Какое наименьшее количество различных целых чисел нужно взять, чтобы среди них можно было выбрать как геометрическую, так и арифметическую прогрессию длины 5?

ВверхВниз   Решение


Можно ли расположить на плоскости 1000 отрезков так, чтобы каждый отрезок обоими своими концами упирался строго внутрь других отрезков?

ВверхВниз   Решение


Озеро имеет форму невыпуклого n-угольника. Докажите, что множество точек озера, из которых видны все его берега, либо пусто, либо заполняет внутренность выпуклого m-угольника, где mn.

ВверхВниз   Решение


Найти все положительные решения системы уравнений
   

ВверхВниз   Решение


Докажите, что отношение площадей подобных треугольников равно квадрату их коэффициента подобия.

ВверхВниз   Решение


Построить треугольник ABC по точкам M и N — основаниям высот AM и BN — и прямой, на которой лежит сторона AB.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 59]      



Задача 76476

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3+
Классы: 10,11

Центр O описанной около треугольника ABC окружности отражается симметрично относительно каждой из сторон. По трём полученным точкам O1, O2, O3 восстановить треугольник ABC, если все остальное стёрто.
Прислать комментарий     Решение


Задача 76486

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3+
Классы: 10,11

Построить треугольник ABC по точкам M и N — основаниям высот AM и BN — и прямой, на которой лежит сторона AB.
Прислать комментарий     Решение


Задача 115869

Темы:   [ Построение треугольников по различным точкам ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Окружность Аполлония ]
Сложность: 4-
Классы: 8,9,10,11

В треугольнике ABC отметили центр вписанной окружности, основание высоты, опущенной на сторону AB, и центр вневписанной окружности, касающейся этой стороны и продолжений двух других. После этого сам треугольник стёрли. Восстановите его.

Прислать комментарий     Решение

Задача 32109

Темы:   [ Построение треугольников по различным точкам ]
[ Средняя линия треугольника ]
[ Векторы помогают решить задачу ]
[ Пятиугольники ]
Сложность: 4-
Классы: 8,9,10

Восстановите  а) треугольник;  б) пятиугольник по серединам его сторон.

Прислать комментарий     Решение

Задача 52351

Темы:   [ Построение треугольников по различным точкам ]
[ Метод ГМТ ]
Сложность: 4-
Классы: 8,9

В данную окружность впишите прямоугольный треугольник, катеты которого проходили бы через две данные точки внутри окружности.

Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .