Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 24 задачи
Версия для печати
Убрать все задачи

В окружность радиуса R вписан шестиугольник ABCDEF. Известно, что $ \angle$A = $ \angle$C = $ \angle$E, AB = a, CD = b, EF = c. Найдите площадь шестиугольника ABCDEF.

Вниз   Решение


Пусть A, B и C – три числа, большие 0 и меньшие 1, K – наибольшее из них. Докажите, что  1 – (1 – A)(1 – B)(1 – C) > K.

ВверхВниз   Решение


Сто положительных чисел C1, C2, ..., C100 удовлетворяют условиям  
Доказать, что среди них можно найти три числа, сумма которых больше 100.

ВверхВниз   Решение


Автор: Нилов Ф.

Центр окружности ω2 лежит на окружности ω1. Из точки X окружности ω1 проведены касательные XP и XQ к окружности ω2 (P и Q – точки касания), которые повторно пересекают ω1 в точках R и S. Докажите, что прямая PQ проходит через середину отрезка RS.

ВверхВниз   Решение


На данной окружности выбраны диаметрально противоположные точки A и B и третья точка C. Касательная, проведённая к окружности в точке A, и прямая BC пересекаются в точке M. Доказать, что касательная, проведённая к окружности в точке C, делит пополам отрезок AM.

ВверхВниз   Решение


Простые числа имеют только два различных делителя – единицу и само это число. А какие числа имеют только три различных делителя?

ВверхВниз   Решение


Дано 25 чисел. Какие бы три из них мы ни выбрали, среди оставшихся найдётся такое четвёртое, что сумма этих четырёх чисел будет положительна. Верно ли, что сумма всех чисел положительна?

ВверхВниз   Решение


Постройте последовательность полиномов, которая получается, если метод Лобачевского (см. задачу 61333) применить для приближенного нахождения корней многочлена  x² – x – 1.  Какие последовательности будут сходиться к корням x1 и x2, если  |x1| > |x2|?

ВверхВниз   Решение


Можно ли расставить в вершинах куба натуральные числа так, чтобы в каждой паре чисел, связанных ребром, одно из них делилось на другое, а во всех других парах такого не было?

ВверхВниз   Решение


Доказать, что для любых чисел  a1, ..., a1987  и положительных чисел  b1,..., b1987  справедливо неравенство

+ ... + .

ВверхВниз   Решение


На плоскости даны точки A и B. Найдите геометрическое место точек C, для которых $ \angle$C > $ \angle$B и треугольник ABC:

а) остроугольный;

б) тупоугольный.

ВверхВниз   Решение


a, b, c, d – положительные числа. Докажите, что по крайней мере одно из неравенств
  1)  a + b < c + d;
  2)  (a + b)cd < ab(c + d);
  3)  (a + b)(c + d) < ab + cd
неверно.

ВверхВниз   Решение


Автор: Фольклор

Дано 1989 чисел. Известно, что сумма любых десяти из них положительна. Докажите, что сумма всех чисел тоже положительна.

ВверхВниз   Решение


Каждый участник двухдневной олимпиады в первый день решил столько же задач, сколько все остальные в сумме – во второй день.
Докажите, что все участники решили поровну задач.

ВверхВниз   Решение


Автор: Фольклор

Мальвина велела Буратино разрезать квадрат на 7 прямоугольников (необязательно различных), у каждого из которых одна сторона в два раза больше другой. Выполнимо ли это задание?

ВверхВниз   Решение


а) Докажите, что    где a0, ..., an – рациональные числа.

б) Найдите эти представления в явном виде для  n = 2, 3, 4, 5.

в) Выразите sinnx при чётном n в виде    а при нечётном – в виде  

ВверхВниз   Решение


Вычислите суммы:
а)  cos²x + cos²2x + ... + cos²2nx;
б)  sin²x + sin²2x + ... + sin²2nx.

ВверхВниз   Решение


Известно, что  sin α = 3/5.  Докажите, что  sin 25α  имеет вид  n/525,  где n – целое, не делящееся на 5.

ВверхВниз   Решение


а) Докажите равенство:   cos φ + ... + cos nφ = ;
б) Вычислите сумму:   sinφ + ... + sin nφ.

ВверхВниз   Решение


Пользуясь теоремой о рациональных корнях многочлена (см. задачу 61013), докажите, что если  p/q  рационально и  cos (p/q)° ≠ 0, ±½, ±1,  то
cos (p/q)°  – число иррациональное.

ВверхВниз   Решение


Около окружности радиуса R описана равнобедренная трапеция ABCD. E и K – точки касания этой окружности с боковыми сторонами трапеции. Угол между основанием AB и боковой стороной AD трапеции равен 60°. Докажите, что  EK || AB  и найдите площадь трапеции ABKE.

ВверхВниз   Решение


Дан куб ABCDA1B1C1D1 с ребром 4. На середине ребра BC взята точка M , а на ребре A1D1 на расстоянии 1 от вершины A1 взята точка N . Найдите длину кратчайшего пути между точками M и N по поверхности куба.

ВверхВниз   Решение


Докажите, что окружность, построенная на боковой стороне равнобедренного треугольника как на диаметре, проходит через середину основания.

ВверхВниз   Решение


Обозначим через a наименьшее число кругов радиуса 1, которыми можно полностью покрыть заданный многоугольник M, через b — наибольшее число непересекающихся кругов радиуса 1 с центрами внутри многоугольника M. Какое из чисел больше, a или b?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 116391

Темы:   [ Системы точек ]
[ Геометрические неравенства (прочее) ]
[ Доказательство от противного ]
Сложность: 3
Классы: 10,11

Петя отметил на плоскости несколько (больше двух) точек, все расстояния между которыми различны. Пару отмеченных точек  (A, B)  назовём необычной, если A – самая дальняя от B отмеченная точка, а B – ближайшая к A отмеченная точка (не считая самой точки A). Какое наибольшее возможное количество необычных пар могло получиться у Пети?

Прислать комментарий     Решение

Задача 35439

Темы:   [ Вычисление длин дуг ]
[ Геометрические неравенства (прочее) ]
Сложность: 3
Классы: 9,10

В прямоугольном листе бумаги сделали несколько непересекающихся круглых дыр. На дырявом листке отметили две точки, находящиеся на расстоянии d друг от друга. Докажите, что на дырявом листке можно нарисовать кривую длины меньше 1,6d, соединяющую данные точки.
Прислать комментарий     Решение


Задача 78162

Темы:   [ Покрытия ]
[ Геометрические неравенства (прочее) ]
Сложность: 3+
Классы: 9,10,11

Обозначим через a наименьшее число кругов радиуса 1, которыми можно полностью покрыть заданный многоугольник M, через b — наибольшее число непересекающихся кругов радиуса 1 с центрами внутри многоугольника M. Какое из чисел больше, a или b?
Прислать комментарий     Решение


Задача 108198

Темы:   [ Неравенство треугольника ]
[ Геометрические неравенства (прочее) ]
Сложность: 3+
Классы: 7,8,9

Автор: Левин А.

Города A , B , C и D расположены так, что расстояние от C до A меньше, чем расстояние от D до A , а расстояние от C до B меньше, чем расстояние от D до B . Докажите, что расстояние от города C до любой точки прямолинейной дороги, соединяющей города A и B , меньше, чем расстояние от D до этой точки.
Прислать комментарий     Решение


Задача 78158

Темы:   [ Покрытия ]
[ Геометрические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10

Обозначим через a наибольшее число непересекающихся кругов диаметра 1, центры которых лежат внутри многоугольника M, через b — наименьшее число кругов радиуса 1, которыми можно покрыть весь многоугольник M. Какое число больше: a или b?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .