Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 88]
|
|
Сложность: 5- Классы: 9,10
|
В невыпуклом шестиугольнике каждый угол равен
либо 90, либо 270 градусов. Верно ли, что при некоторых длинах
сторон его можно разрезать на два подобных ему и неравных между
собой шестиугольника?
|
|
Сложность: 5 Классы: 10,11
|
Пусть $OABCDEF$ – шестигранная пирамида с основанием $ABCDEF$, описанная около сферы $\omega$. Плоскость, проходящая через точки касания $\omega$ с гранями $OFA$, $OAB$ и $ABCDEF$, пересекает ребро $OA$ в точке $A_1$; аналогично определяются точки $B_1$, $C_1$, $D_1$, $E_1$ и $F_1$. Пусть $\ell$, $m$ и $n$ – прямые $A_1D_1$, $B_1E_1$ и $C_1F_1$ соответственно. Оказалось, что $\ell$ и $m$ лежат в одной плоскости, $m$ и $n$ также лежат в одной плоскости. Докажите, что $\ell$ и $n$ лежат в одной плоскости.
|
|
Сложность: 5 Классы: 9,10,11
|
Внутри правильного шестиугольника находится другой правильный шестиугольник с
вдвое меньшей стороной.
Доказать, что центр большого шестиугольника лежит внутри малого шестиугольника.
[Теорема Брианшона]
|
|
Сложность: 6 Классы: 8,9,10
|
Докажите, что диагонали
AD,
BE и
CF описанного
шестиугольника
ABCDEF пересекаются в одной точке (Брианшон).
|
|
Сложность: 2+ Классы: 7,8,9
|
Внутри правильного шестиугольника со стороной 1 расположено 7 точек. Докажите, что среди них найдутся две точки на расстоянии не больше 1.
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 88]