ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Решите уравнение x³ + x – 2 = 0 подбором и по формуле Кардано. Докажите, что произвольное уравнение третьей степени z³ + Az² + Bz + C = 0 при помощи линейной замены переменной z = x + β можно привести к виду x3 + px + q = 0. Найдите сумму всех плоских углов треугольной пирамиды. Известно, что Учитель выбрал 10 подряд идущих натуральных чисел и сообщил их Пете и Васе. Каждый мальчик должен разбить эти 10 чисел на пары, подсчитать произведение чисел в каждой паре, а затем сложить полученные пять произведений. Докажите, что мальчики могут сделать это так, чтобы разбиения на пары у них не были одинаковыми, но итоговые суммы совпадали. Петя сложил 10 последовательных степеней двойки, начиная с некоторой, а Вася сложил некоторое количество последовательных натуральных чисел, начиная с 1. Могли ли они получить один и тот же результат? Существует ли тетраэдр, высоты которого равны 1, 2, 3 и 6? Плоскость, заданная уравнением x+2y+3z=0, разбивает пространство на два полупространства. Узнайте, в одном или в разных полупространствах лежат точки (1,2,-2) и (2,1,-1).
Требуется вычислить количество N-значных чисел в системе счисления с основанием K, таких что их запись не содержит двух подряд идущих нулей. Можно ли разместить в пространстве четыре свинцовых шара и точечный источник света так, чтобы каждый исходящий из источника света луч пересекал хотя бы один из шаров? Задан массив X [1:m]. Найти длину k самой длинной ''пилообразной (зубьями вверх)'' последовательности идущих подряд чисел: X [p+1]< X [p+2]>X [p+3]<...> X[p+k]. Найдите последнюю цифру числа 19891989. Пусть a – заданное вещественное число, n – натуральное число, n > 1. На плоскости отмечены три точки, служащие изображениями (параллельными проекциями) трёх последовательных вершин правильного шестиугольника. Постройте изображения остальных вершин шестиугольника. В круг вписан правильный треугольник. Найдите отношение объёмов тел, полученных от вращения круга и треугольника вокруг диаметра, проходящего через вершину треугольника. В ответе укажите отношение меньшего объёма к большему (с точностью до сотых). На плоскости даны изображение (параллельная проекция) плоского четырёхугольника ABCD и точки M , не лежащей в его плоскости. Постройте изображение прямой, по которой пересекаются плоскости ABM и CDM .
В шаре радиуса Ребро правильного октаэдра равно a . Найдите кратчайшее расстояние по поверхности октаэдра между серединами двух его параллельных рёбер. На рёбрах AB , BC и BD пирамиды ABCD взяты точки K , L и M соответственно. Постройте точку пересечения плоскостей ACM , CDK и ADL .
При переработке радиоактивных материалов образуются отходы двух видов — особо опасные (тип A) и неопасные (тип B). Для их хранения используются одинаковые контейнеры. После помещения отходов в контейнеры, последние укладываются вертикальной стопкой. Стопка считается взрывоопасной, если в ней подряд идет более двух контейнеров типа A. Для заданного количества контейнеров N определить число безопасных стопок. Дан прямоугольный параллелепипед ABCDA1B1C1D1 , в котором AB =4 , AD = 6 , AA1 = 2 . Точки F и K расположены на рёбрах AD и B1C1 соответственно, причём AF:FD = C1K:KB1 = 1:2 , P – точка пересечения диагоналей грани ABCD . Найдите угол между прямыми PK и B1F . Вычислите функции gk,l(x) при 0 ≤ k + l ≤ 4 и покажите, что все они являются многочленами. Найдите последнюю цифру числа 250. Решить уравнение x8 + 4x4 + x² + 1 = 0. Пусть x1 < x2 < ... < xn – действительные числа. Постройте многочлены f1(x), f2(x), ..., fn(x) степени n – 1, которые удовлетворяют условиям fi(xi) = 1 и fi(xj) = 0 при i ≠ j (i, j = 1, 2, ..., n). Число p – корень кубического уравнения x³ + x – 3 = 0. Даны квадратные трёхчлены f1(x), f2(x), ..., f100(x) с одинаковыми коэффициентами при x², одинаковыми коэффициентами при x, но различными свободными членами; у каждого из них есть по два корня. У каждого трёхчлена fi(x) выбрали один корень и обозначили его через xi. Какие значения может принимать сумма f2(x1) + f3(x2) + ... + f100(x99) + f1(x100)? Найти все значения x и y, удовлетворяющие равенству xy + 1 = x + y. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36]
Вася сложил четвёртую степень и квадрат некоторого числа, отличного от нуля, и сообщил результат Пете.
Решить уравнение x8 + 4x4 + x² + 1 = 0.
Найти все значения x и y, удовлетворяющие равенству xy + 1 = x + y.
Имеет ли отрицательные корни уравнение x4 – 4x³ – 6x² – 3x + 9 = 0?
Число p – корень кубического уравнения x³ + x – 3 = 0.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке