ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В плоскости выпуклого четырёхугольника ABCD расположена точка P. Проведены биссектрисы PK,PL, PM и PN треугольников APB, BPC, CPD и DPA соответственно.
  а) Найдите хотя бы одну такую точку P, для которой четырёхугольник KLMN – параллелограмм.
  б) Найдите все такие точки.

Вниз   Решение


На графике многочлена с целыми коэффициентами отмечены две точки с целыми координатами.
Докажите, что если расстояние между ними – целое число, то соединяющий их отрезок параллелен оси абсцисс.

Вверх   Решение

Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 217]      



Задача 54609

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Метод координат ]
Сложность: 4
Классы: 8,9

Дан треугольник ABC и точка H на прямой AB . Докажите, что CH — высота треугольника ABC тогда и только тогда, когда AC2-BC2=AH2-BH2 .
Прислать комментарий     Решение


Задача 57142

 [Окружность Аполлония]
Темы:   [ ГМТ - окружность или дуга окружности ]
[ Метод координат на плоскости ]
Сложность: 4
Классы: 8,9

На плоскости даны две точки A и B. Найдите ГМТ M, для которых AM : BM = k (окружность Аполлония).
Прислать комментарий     Решение


Задача 58489

Темы:   [ Кривые второго порядка ]
[ Метод координат на плоскости ]
[ Ромбы. Признаки и свойства ]
Сложность: 4
Классы: 10,11

Докажите, что все вписанные в эллипс ромбы описаны вокруг одной окружности.
Прислать комментарий     Решение


Задача 86113

Темы:   [ Целочисленные и целозначные многочлены ]
[ Метод координат на плоскости ]
[ Делимость чисел. Общие свойства ]
[ Теорема Безу. Разложение на множители ]
Сложность: 4
Классы: 9,10,11

На графике многочлена с целыми коэффициентами отмечены две точки с целыми координатами.
Докажите, что если расстояние между ними – целое число, то соединяющий их отрезок параллелен оси абсцисс.

Прислать комментарий     Решение

Задача 87175

Темы:   [ Метод координат в пространстве ]
[ Уравнение плоскости ]
[ Скалярное произведение ]
Сложность: 4
Классы: 8,9

Составьте уравнение плоскости, содержащей прямую = - = 3-z и параллельную прямой пересечения плоскостей 4x + 5z - 3 = 0 и 2x + y + 2z = 0 .
Прислать комментарий     Решение


Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 217]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .