ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Две окружности с центрами M и N, лежащими на стороне AB
треугольника ABC, касаются друг друга и пересекают стороны AC и
BC в точках A, P и B, Q соответственно. Причем
AM = PM = 2, BN = = QN = 5. Найдите радиус описанной около треугольника ABC
окружности, если известно, что отношение площади треугольника AQN
к площади треугольника MPB равно
15
Четырёхугольная пирамида SABCD вписана в сферу. Из вершин A, B, C, D опущены перпендикуляры AA1, BB1, CC1, DD1 на прямые SC, SD, SA, SB соответственно. Оказалось, что точки S, A1, B1, C1, D1 различны и лежат на одной сфере. Докажите, что точки A1, B1, C1, D1 лежат в одной плоскости. Точка E – середина той дуги AB описанной окружности треугольника ABC, на которой лежит точка C; C1 – середина стороны AB. Из точки E опущен перпендикуляр EF на AC. Докажите, что: Дан многочлен степени $n \geqslant 1$ с целыми ненулевыми коэффициентами, каждый из которых является его корнем. Докажите, что модули коэффициентов этого многочлена не превосходят 2. У пирата есть пять мешочков с монетами, по 30 монет в каждом. Он знает, что в одном лежат золотые монеты, в другом – серебряные, в третьем – бронзовые, а в каждом из двух оставшихся поровну золотых, серебряных и бронзовых. Можно одновременно достать любое число монет из любых мешочков и посмотреть, что это за монеты (вынимаются монеты один раз). Какое наименьшее число монет нужно достать, чтобы наверняка узнать содержимое хотя бы одного мешочка? Точки M, N, K – середины рёбер соответственно AB, BC,
DD1 параллелепипеда ABCDA1B1C1D1. |
Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 330]
Точки M, N, K – середины рёбер соответственно AB, BC,
DD1 параллелепипеда ABCDA1B1C1D1.
В трапеции ABCD с боковыми сторонами AB = 8 и CD = 5 биссектриса угла B пересекает биссектрисы углов A и C в точках M и N соответственно, а биссектриса угла D пересекает те же две биссектрисы в точках L и K, причём точка L лежит на основании BC.
В треугольнике ABC O – центр описанной окружности, I – центр вписанной. Прямая, проходящая через I и перпендикулярная OI, пересекает AB в точке X, а внешнюю биссектрису угла C – в точке Y. В каком отношении I делит отрезок XY?
В остроугольном треугольнике ABC углы B и C больше 60°. Точки P, Q на сторонах AB, AC таковы, что A, P, Q и ортоцентр треугольника H лежат на одной окружности; K – середина отрезка PQ. Докажите, что ∠BKC > 90°.
Одна из вневписанных окружностей треугольника ABC касается стороны AB и продолжений сторон CA и CB в точках C1, B1 и A1 соответственно. Другая вневписанная окружность касается стороны AC и продолжений сторон BA и BC в точках B2, C2 и A2 соответственно. Прямые A1B1 и A2B2 пересекаются в точке P, прямые A1C1 и A2C2 – в точке Q. Докажите, что точки A, P и Q лежат на одной прямой.
Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 330]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке