ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Основание пирамиды – равнобедренный треугольник с основанием 6 и высотой 9. Каждое боковое ребро равно 13. Найдите объём пирамиды.

   Решение

Задачи

Страница: << 125 126 127 128 129 130 131 >> [Всего задач: 2393]      



Задача 87255

Темы:   [ Частные случаи параллелепипедов (прочее) ]
[ Объем параллелепипеда ]
Сложность: 3
Классы: 8,9

В основании прямого параллелепипеда лежит параллелограмм со сторонами 1 и 4 и острым углом 60o . Большая диагональ параллелепипеда равна 5. Надите его объём.
Прислать комментарий     Решение


Задача 87256

Темы:   [ Частные случаи тетраэдров (прочее) ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 8,9

Основание пирамиды – равнобедренный треугольник с основанием 6 и высотой 9. Каждое боковое ребро равно 13. Найдите объём пирамиды.
Прислать комментарий     Решение


Задача 87257

Темы:   [ Прямоугольный тетраэдр ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 8,9

В треугольной пирамиде боковые рёбра попарно перпендикулярны и равны , и . Найдите объём и площадь основания пирамиды.
Прислать комментарий     Решение


Задача 87258

Темы:   [ Основные свойства и определения правильных многогранников ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 8,9

Найдите объём правильного октаэдра (правильного восьмигранника), ребро которого равно a .
Прислать комментарий     Решение


Задача 87259

Темы:   [ Частные случаи параллелепипедов (прочее) ]
[ Боковая поверхность параллелепипеда ]
Сложность: 3
Классы: 8,9

Основание призмы – квадрат со стороной a . Одна из боковых граней – также квадрат, другая – ромб с углом 60o . Найдите полную поверхность призмы.
Прислать комментарий     Решение


Страница: << 125 126 127 128 129 130 131 >> [Всего задач: 2393]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .