Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Дана прямоугольная трапеция ABCD, в которой  ∠C = ∠B = 90°.  На стороне AD как на диаметре построена окружность, которая пересекает сторону BC в точках M и N. Докажите, что  BM·MC = AB·CD.

Вниз   Решение


Вершина угла величиной 70° служит началом луча, образующего с его сторонами углы 30° и 40°. Из некоторой точки M на этот луч и на стороны угла опущены перпендикуляры, основания которых – A, B и C. Найдите углы треугольника ABC.

ВверхВниз   Решение


Правильную четырёхугольную пирамиду PKLMN с вершиной P пересекает плоскость, проходящая через вершину основания L и перпендикулярная ребру PN . Площадь получившегося сечения в три раза меньше площади основания пирамиды. Найдите отношение отрезка PK к высоте пирамиды.

ВверхВниз   Решение


В правильной четырёхугольной пирамиде расположены два одинаковых шара радиуса r , касающиеся основания пирамиды в точках, принадлежащих отрезку, соединяющему середины противоположных сторон основания. Каждый из шаров касается боковой грани пирамиды и другого шара. Найдите высоту пирамиды, при которой объём пирамиды наименьший.

ВверхВниз   Решение


В правильной пирамиде SMNPQ ( S – вершина) точки K и F – середины рёбер PQ и QM соответственно, точка E лежит на отрезке SK , причём SK = 4 , SE = . Расстояние от точки S до прямой EF равно . Найдите объём пирамиды. Дана сфера радиуса 1 с центром в точке S . Рассматриваются всевозможные правильные тетраэдры ABCD такие, что точки A и B лежат на прямой EF , а прямая CD касается сферы в одной из точек отрезка CD . Найдите наименьшее значение длины ребра рассматриваемых тетраэдров.

ВверхВниз   Решение


В королевстве некоторые пары городов соединены железной дорогой. У короля есть полный список, в котором поименно перечислены все такие пары (каждый город имеет свое собственное имя). Оказалось, что для любой упорядоченной пары городов принц может переименовать все города так, чтобы первый город оказался названным именем второго города, а король не заметил бы изменений. Верно ли, что для любой пары городов принц может переименовать все города так, чтобы первый город оказался названным именем второго города, второй город оказался названным именем первого города, а король не заметил бы изменений?

ВверхВниз   Решение


Между зажимами A и B включено несколько сопротивлений. Каждое сопротивление имеет входной и выходной зажимы. Какое наименьшее число сопротивлений необходимо иметь и какова может быть схема их соединения, чтобы при порче любых девяти сопротивлений цепь оставалась соединяющей зажимы A и B, но не было короткого замыкания? (Порча сопротивления: короткое замыкание или обрыв.)

ВверхВниз   Решение


$ \Delta$ABC разбит прямой BD на два треугольника. Докажите, что сумма радиусов окружностей, вписанных в $ \Delta$ABD и $ \Delta$DBC, больше радиуса окружности, вписанной в $ \Delta$ABC.

ВверхВниз   Решение


В равнобедренном треугольнике ABC длина основания AC равна 2$ \sqrt{7}$, длина боковой стороны равна 8. Точка K делит высоту BD треугольника в отношении 2:3, считая от точки B. Что больше: длина CK или длина AC?

ВверхВниз   Решение


Автор: Фольклор

В Чикаго орудует 36 преступных банд, некоторые из которых враждуют между собой. Каждый гангстер состоит в нескольких бандах, причём каждые два гангстера состоят в разных наборах банд. Известно, что ни один гангстер не состоит в двух бандах, враждующих между собой. Кроме того, оказалось, что каждая банда, в которой не состоит некоторый гангстер, враждует с какой-то бандой, в которой данный гангстер состоит. Какое наибольшее количество гангстеров может быть в Чикаго?

ВверхВниз   Решение


Окружность, построенная на стороне треугольника как на диаметре, высекает на двух других сторонах равные отрезки.
Докажите, что треугольник равнобедренный.

ВверхВниз   Решение


В треугольник вписана окружность. Около неё описан квадрат. Докажите, что вне треугольника лежит меньше половины периметра квадрата.

ВверхВниз   Решение


На плоскости отмечено 100 точек, никакие три из которых не лежат на одной прямой. Некоторые пары точек соединены отрезками. Известно, что никакая тройка отрезков не образует треугольника. Какое наибольшее число отрезков могло быть проведено?

ВверхВниз   Решение


Доказать, что в круге радиуса 1 нельзя найти более 5 точек, попарные расстояния между которыми все больше 1.

ВверхВниз   Решение


Найдите наибольшее значение объёма пирамиды SABC при следующих ограничениях

SA 4, SB 7, SC 9, AB = 5, BC 6, AC 8.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 127]      



Задача 87352

Темы:   [ Максимальное/минимальное расстояние ]
[ Правильный тетраэдр ]
Сложность: 4
Классы: 10,11

В правильной пирамиде SMNPQ ( S – вершина) точки K и F – середины рёбер PQ и QM соответственно, точка E лежит на отрезке SK , причём SK = 4 , SE = . Расстояние от точки S до прямой EF равно . Найдите объём пирамиды. Дана сфера радиуса 1 с центром в точке S . Рассматриваются всевозможные правильные тетраэдры ABCD такие, что точки A и B лежат на прямой EF , а прямая CD касается сферы в одной из точек отрезка CD . Найдите наименьшее значение длины ребра рассматриваемых тетраэдров.
Прислать комментарий     Решение


Задача 87357

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Площадь сечения ]
Сложность: 4
Классы: 10,11

В основании четырёхугольной пирамиды лежит ромб ABCD , в котором BAD = 60o . Известно, что SA = SC , SD = SB = AB . На ребре DC взята точка E так, что площадь треугольника BSE наименьшая среди площадей всех сечения пирамиды, содержащих отрезок BS и пересекающих отрезок DC . Найдите отношение DE:EC .
Прислать комментарий     Решение


Задача 87369

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Неравенства с объемами ]
Сложность: 4
Классы: 10,11

Найдите наибольшее значение объёма пирамиды SABC при следующих ограничениях

SA 4, SB 7, SC 9, AB = 5, BC 6, AC 8.

Прислать комментарий     Решение

Задача 108850

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная пирамида ]
[ Правильная призма ]
Сложность: 4
Классы: 8,9

Объём правильной четырёхугольной пирамиды равен V , угол между боковым ребром и плоскостью основания равен 30o . Рассматриваются правильные треугольные призмы, вписанные в пирамиду так, что одно из боковых рёбер лежит на диагонали основания пирамиды, одна из боковых граней параллельна основанию пирамиды, и вершины этой грани лежат на боковых гранях пирамиды. Найдите: а) объём той призмы, плоскость боковой грани которой делит высоту пирамиды в отношении 2:3, считая от вершины; б) наибольшее значение объёма рассматриваемых призм.
Прислать комментарий     Решение


Задача 108851

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная пирамида ]
[ Правильная призма ]
Сложность: 4
Классы: 8,9

Высота правильной треугольной пирамиды равна высоте её основания, объём пирамиды равен V . Рассматриваются правильные треугольные призмы, вписанные в пирамиду так, что боковое ребро лежит на высоте основания пирамиды, противоположная этому ребру боковая грань параллельна основанию пирамиды, и вершины этой грани лежат на боковой поверхности пирамиды. Найдите: а) объём той призмы, плоскость боковой грани которой делит высоту пирамиды в отношении 3:1, считая от вершины пирамиды; б) наибольшее значение объёма рассматриваемых призм.
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 127]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .