ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Две окружности касаются описанной окружности треугольника ABC в точке K;
кроме того, одна из этих окружностей касается стороны AB в точке M, а
другая касается стороны AC в точке N. Докажите, что центр вписанной
окружности треугольника ABC лежит на прямой MN.
Дано два тетраэдра A1A2A3A4 и B1B2B3B4. Рассмотрим шесть пар рёбер AiAj и BkBl, где (i, j, k, l) – перестановка чисел (1, 2, 3, 4) (например, A1A2 и B3B4). Известно, что во всех парах, кроме одной, рёбра перпендикулярны. Докажите, что в оставшейся паре рёбра тоже перпендикулярны. На дуге CD описанной окружности квадрата ABCD
взята точка P. Докажите, что
PA + PC = Среди всех треугольников, вписанных в данную окружность, найдите тот,
у которого максимальна сумма квадратов длин сторон.
Найдите геометрическое место точек, из которых данный отрезок виден под данным углом.
Площадь данного выпуклого четырёхугольника равна S. Найдите площадь четырёхугольника с вершинами в серединах сторон данного.
Дан набор из нескольких гирек, на каждой написана масса. Известно, что набор масс и набор надписей одинаковы, но возможно некоторые надписи перепутаны. Весы представляют из себя горизонтальный отрезок, закреплённый за середину. При взвешивании гирьки прикрепляются в произвольные точки отрезка, после чего весы остаются в равновесии либо отклоняются в ту или иную сторону. Всегда ли удастся за одно взвешивание проверить, все надписи верны или нет? (Весы будут в равновесии, если сумма моментов гирь справа от середины равна сумме моментов гирь слева; иначе отклонятся в сторону, где сумма больше. Моментом гири называется произведение ms массы гири m на расстояние s он нее до середины отрезка.) Найдите предел последовательности, которая задана условиями
a1 = 2, an + 1 =
Точка M внутри выпуклого четырехугольника ABCD такова, что площади треугольников ABM, BCM, CDM и DAM равны. Верно ли, что ABCD — параллелограмм, а точка M — точка пересечения его диагоналей? Вписанная окружность касается сторон BC, CA и AB в точках A1, B1 и
C1. Пусть Q — середина отрезка A1B1. Докажите, что
В тетраэдре ABCD все плоские углы при вершине A равны по
60o . Докажите, что AB + AC + AD Докажите, что сечением пирамиды ABCD плоскостью, параллельной рёбрам AC и BD , является параллелограмм, причём для одной такой плоскости этот параллелограмм будет ромбом. Найдите сторону этого ромба, если AC = a , BD = b . |
Страница: << 1 2 3 4 >> [Всего задач: 19]
Докажите, что сечением пирамиды ABCD плоскостью, параллельной рёбрам AC и BD , является параллелограмм, причём для одной такой плоскости этот параллелограмм будет ромбом. Найдите сторону этого ромба, если AC = a , BD = b .
В пирамиде ABCD площадь грани ABC в четыре раза больше площади грани ABD . На ребре CD взята точка M , причём CM:MD = 2 . Через точку M проведены плоскости, параллельные граням ABC и ABD . Найдите отношение площадей получившихся сечений.
Боковое ребро пирмиды разделено на 100 равных частей и через точки деления проведены плоскости, параллельные основанию. Найдите отношение площадей наибольшего и наименьшего из получившихся сечений.
На боковом ребре AB пирамиды взяты точки K и M , причём
AK = BM . Через эти точки проведены сечения, параллельные основанию
пирамиды. Известно, что сумма площадей этих сечений составляет
Плоскость, параллельная основанию пирамиды, делит её объём на две равные части. В каком отношении эта плоскость делит боковые рёбра пирамиды?
Страница: << 1 2 3 4 >> [Всего задач: 19]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке