Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 22 задачи
Версия для печати
Убрать все задачи

Последовательность  x0, x1, x2, ...  определена следующими условиями:  x0 = 1,  x1 = λ,  для любого  n > 1  выполнено равенство

(α + β)nxn = αnxnx0 + αn–1βxn–1x1 + αn–2β2xn–2x2 + ... + βnx0xn.
Здесь α, β, λ – заданные положительные числа. Найдите xn и выясните, при каком n величина xn наибольшая.

Вниз   Решение


Пирог имеет форму правильного n-угольника, вписанного в окружность радиуса 1. Из середин сторон проведены прямолинейные надрезы длины 1. Доказать, что при этом от пирога будет отрезан какой-нибудь кусок.

ВверхВниз   Решение


Положительные числа a, b, c таковы, что  a² + b² – ab = c².  Докажите, что (a – c)(b – c) ≤ 0.

ВверхВниз   Решение


Найдите сумму (см. задачу 60424 про треугольник Лейбница):
  1/12 + 1/30 + 1/60 + 1/105 + ...
и обобщите полученный результат.

ВверхВниз   Решение


Основание призмы – квадрат со стороной a . Одна из боковых граней – также квадрат, другая – ромб с углом 60o . Найдите полную поверхность призмы.

ВверхВниз   Решение


Давным-давно страной Тарнией правил царь Ятианр. Чтобы тарнийцы поменьше рассуждали, он придумал для них простой язык. Его алфавит состоял всего из шести букв: А, И, Н, Р, Т, Я, но порядок их отличался от принятого в русском языке. Словами этого языка были все последовательности, использующие каждую из этих букв по одному разу. Ятианр издал полный словарь нового языка. В соответствии с алфавитом первым словом словаря оказалось "Тарния". Какое слово следовало в словаре за именем Ятианр?

ВверхВниз   Решение


В плоскости отмечена 101 точка, не все они лежат на одной прямой. Через каждую пару отмеченных точек красным карандашом проводится прямая. Докажите, что на плоскости существует точка, через которую проходит не меньше 11 красных прямых.

ВверхВниз   Решение


На плоскости даны 2004 точки. Запишем все попарные расстояния между ними.
Докажите, что среди записанных чисел не менее тридцати различных.

ВверхВниз   Решение


Можно ли из кубиков размером 1×1×1 склеить многогранник, площадь поверхности которого равна 2015? (Кубики приклеиваются так, что склеиваемые грани полностью примыкают друг к другу.)

ВверхВниз   Решение


Куб сложен из 27 одинаковых кубиков (см. рис.). Сравните площадь поверхности этого куба и площадь поверхности фигуры, которая получится, если из него вынуть все "угловые" кубики.

ВверхВниз   Решение


Белая плоскость произвольным образом забрызгана чёрной тушью. Доказать, что для любого положительного l существует отрезок длины l, у которого оба конца одного цвета.

ВверхВниз   Решение


В квадрате 4×4 нарисовано 15 точек Доказать, что из него можно вырезать квадратик 1×1, не содержащий внутри себя точек.

ВверхВниз   Решение


Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.

ВверхВниз   Решение


а) Докажите, что     (сумма берётся по всем целым i, 0 ≤ i ≤ n/2).

б) Докажите, что если p и q – различные числа и  p + q = 1,  то

ВверхВниз   Решение


Солдаты построены в две шеренги по n человек, так что каждый солдат из первой шеренги не выше стоящего за ним солдата из второй шеренги. В шеренгах солдат выстроили по росту. Докажите, что после этого каждый солдат из первой шеренги также будет не выше стоящего за ним солдата из второй шеренги.

ВверхВниз   Решение


Стороны основания прямого параллелепипеда равны a и b и образуют угол в 30o . Боковая поверхность равна S . Найдите объём параллелепипеда.

ВверхВниз   Решение


При обычной игре в домино кости выкладываются так, чтобы разность между числами на соседних костях равнялась 0.
Можно ли выложить все 28 костей в замкнутую цепь так, чтобы все эти разности равнялись ±1?

ВверхВниз   Решение


Пусть ABC – остроугольный треугольник, C' и A' – произвольные точки на сторонах AB и BC соответственно, B' – середина стороны AC.
  а) Докажите, что площадь треугольника A'B'C' не больше половины площади треугольника ABC.
  б) Докажите, что площадь треугольника A'B'C' равна четверти площади треугольника ABC тогда и только тогда, когда хотя бы одна из точек A', C' совпадает с серединой соответствующей стороны.

ВверхВниз   Решение


Дядька Черномор написал на листке бумаги число 20.  33 богатыря передают листок друг другу, и каждый или прибавляет к числу, или отнимает от него единицу. Может ли в результате получиться число 10?

ВверхВниз   Решение


На шахматной доске 5×5 клеток расставили 25 шашек – по одной на каждой клетке. Потом все шашки сняли с доски, но запомнили, на какой клетке стояла каждая. Можно ли ещё раз расставить шашки на доске таким образом, чтобы каждая шашка стояла на клетке, соседней с той, на которой она стояла в прошлый раз (соседняя по горизонтали или вертикали, но не наискосок)?

ВверхВниз   Решение


Из целых чисел от 0 до 1000 выбрали 101 число.
Докажите, что среди модулей их попарных разностей есть десять различных чисел, не превосходящих 100.

ВверхВниз   Решение


Квадратный лист бумаги разрезали на шесть кусков в форме выпуклых многоугольников; пять кусков затерялись, остался один кусок в форме правильного восьмиугольника (см. рисунок). Можно ли по одному этому восьмиугольнику восстановить исходный квадрат?

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 126]      



Задача 89934

Темы:   [ Разрезания (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Геометрия на клетчатой бумаге ]
Сложность: 2+
Классы: 5,6,7

В квадрате 4×4 нарисовано 15 точек Доказать, что из него можно вырезать квадратик 1×1, не содержащий внутри себя точек.
Прислать комментарий     Решение


Задача 107703

Темы:   [ Упаковки ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 2+
Классы: 6,7,8

Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно
а) по 2 монеты;   б) по 3 монеты;  в) по 4 монеты;
г) по 5 монет;   д) по 6 монет;   е) по 7 монет?
(Разрешается класть монеты одну на другую.) В тех случаях, когда это возможно, нарисуйте, как это сделать. В остальных случаях докажите, что так расположить монеты нельзя.
Прислать комментарий     Решение


Задача 35238

Темы:   [ Раскраски ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3-
Классы: 7,8,9

Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.
Прислать комментарий     Решение


Задача 107821

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3-
Классы: 7,8,9

В некоторых клетках шахматной доски стоят фигуры. Известно, что на каждой горизонтали стоит хотя бы одна фигура, причём в разных горизонталях – разное число фигур. Докажите, что всегда можно отметить 8 фигур так, чтобы в каждой вертикали и каждой горизонтали стояла ровно одна отмеченная фигура.

Прислать комментарий     Решение

Задача 88235

Темы:   [ Замощения костями домино и плитками ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Разные задачи на разрезания ]
[ Выпуклые многоугольники ]
Сложность: 3
Классы: 5,6,7,8

Квадратный лист бумаги разрезали на шесть кусков в форме выпуклых многоугольников; пять кусков затерялись, остался один кусок в форме правильного восьмиугольника (см. рисунок). Можно ли по одному этому восьмиугольнику восстановить исходный квадрат?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 126]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .