Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Как-то Кролик торопился на встречу с осликом Иа-Иа, но к нему неожиданно пришли Винни-Пух и Пятачок. Будучи хорошо воспитанным, Кролик предложил гостям подкрепиться. Пух завязал салфеткой рот Пятачку и в одиночку съел 10 горшков мёда и 22 банки сгущенного молока, причём горшок мёда он съедал за 2 минуты, а банку молока – за минуту. Узнав, что больше ничего сладкого в доме нет, Пух попрощался и увёл Пятачка. Кролик с огорчением подумал, что он бы не опоздал на встречу с осликом, если бы Пух поделился с Пятачком. Зная, что Пятачок съедает горшок мёда за 5 минут, а банку молока – за 3 минуты, Кролик вычислил наименьшее время, за которое гости смогли бы уничтожить его запасы. Чему равно это время? (Банку молока и горшок мёда можно делить на любые части.)

Вниз   Решение


Художник-авангардист Змий Клеточкин покрасил несколько клеток доски размером 7×7, соблюдая правило: каждая следующая закрашиваемая клетка должна соседствовать по стороне с предыдущей закрашенной клеткой, но не должна соседствовать ни с одной другой ранее закрашенной клеткой. Ему удалось покрасить 31 клетку.

Побейте его рекорд — закрасьте а) 32 клетки; б) 33 клетки.

ВверхВниз   Решение


а) Дан параллелограмм ABCD. Докажите, что величина  AX2 + CX2 - BX2 - DX2 не зависит от выбора точки X.
б) Четырехугольник ABCD не является параллелограммом. Докажите, что все точки X, удовлетворяющие соотношению  AX2 + CX2 = BX2 + DX2, лежат на одной прямой, перпендикулярной отрезку, соединяющему середины диагоналей.

ВверхВниз   Решение


Автор: Кноп К.А.

Существует ли выпуклый пятиугольник (все углы меньше 180o ) ABCDE , у которого все углы ABD , BCE , CDA , DEB и EAC – тупые?

ВверхВниз   Решение


Автор: Карасев Р.

Докажите, что для любого натурального  n > 2  число     делится на 8.

ВверхВниз   Решение


Можно ли так расставить фишки в клетках доски 8×8, чтобы в каждых двух столбцах количество фишек было одинаковым, а в каждых двух строках – различным?

ВверхВниз   Решение


Можно ли расставить охрану вокруг точечного объекта так, чтобы ни к объекту, ни к часовым нельзя было незаметно подкрасться? (Каждый часовой стоит неподвижно и видит на 100 м строго вперёд.)

Вверх   Решение

Задачи

Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 2399]      



Задача 111170

Темы:   [ Правильная пирамида ]
[ Теоремы Чевы и Менелая ]
[ Теорема косинусов ]
Сложность: 4
Классы: 10,11

В правильной четырёхугольной пирамиде SABCD ( S – вершина) точка F – середина ребра SB , а SA=AB . На апофеме SL грани SAD взята точка P так, что SP:SL=7:12 . Сфера с центром на прямой PF , проходит через точки D , F и пересекает прямую AD в точке M , причём MD=l . Найдите длину отрезка AB .
Прислать комментарий     Решение


Задача 111218

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Производная и экстремумы ]
[ Экстремальные свойства. Задачи на максимум и минимум. ]
[ Формула Герона ]
Сложность: 4
Классы: 10,11

Основание пирамиды – квадрат. Высота пирамиды пересекает диагональ основания. Найдите наибольший объём такой пирамиды, если периметр диагонального сечения, содержащего высоту пирамиды, равен 5.
Прислать комментарий     Решение


Задача 111278

Темы:   [ Правильная пирамида ]
[ Теорема синусов ]
Сложность: 4
Классы: 10,11

В правильной треугольной пирамиде SABC ( S – вершина) точки D и E являются серединами рёбер AC и BC соответственно. Через точку E проведена плоскость β , пересекающая рёбра AB и SB и удалённая от точек D и B на одинаковое расстояние, равное . Найдите длины отрезков, на которые плоскость делит ребро SB , если BC=4 , SC=3 .
Прислать комментарий     Решение


Задача 111279

Темы:   [ Правильная пирамида ]
[ Теорема синусов ]
Сложность: 4
Классы: 10,11

В правильной четырёхугольной пирамиде SABCD ( S – вершина) AD= и SD=1 . Через точку B проведена плоскость α , пересекающая ребро SC и удалённая от точек A и C на одинаковое расстояние, равное . Найдите длины отрезков, на которые плоскость α делит ребро SC , если известно, что α не параллельна прямой AC .
Прислать комментарий     Решение


Задача 111280

Темы:   [ Правильная пирамида ]
[ Теорема синусов ]
Сложность: 4
Классы: 10,11

В правильной треугольной пирамиде SABC ( S – вершина) точки K и L являются серединами рёбер AB и AC соответственно. Через точку L проведена плоскость β , пересекающая рёбра BC и SC и удалённая от точек K и C на одинаковое расстояние, равное . Найдите длины отрезков, на которые плоскость β делит ребро SC , если AB= , SB= .
Прислать комментарий     Решение


Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 2399]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .