ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точки E и F – середины рёбер CC1 и C1D1 прямоугольного параллелепипеда ABCDA1B1C1D1 . Ребро KL правильной треугольной пирамиды KLMN ( K – вершина) лежит на прямой AC , а вершины N и M – на прямых DD1 и EF соответственно. Найдите отношение объёмов призмы и пирамиды, если AB:BC=4:3 , KL:MN=2:3 .

   Решение

Задачи

Страница: << 172 173 174 175 176 177 178 >> [Всего задач: 2404]      



Задача 109224

Темы:   [ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 10,11

Угол бокового ребра с плоскостью основания правильной шестиугольной пирамиды равен α . Найдите плоский угол при вершине пирамиды.
Прислать комментарий     Решение


Задача 109225

Темы:   [ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 10,11

Плоский угол при вершине правильной шестиугольной пирамиды равен ϕ . Найдите угол бокового ребра с плоскостью основания пирамиды.
Прислать комментарий     Решение


Задача 109226

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Угол боковой грани с плоскостью основания правильной шестиугольной пирамиды равен β . Найдите угол между соседними боковыми гранями.
Прислать комментарий     Решение


Задача 109227

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Угол между соседними боковыми гранями правильной шестиугольной пирамиды равен γ . Найдите угол боковой грани с плоскостью основания.
Прислать комментарий     Решение


Задача 109228

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Угол боковой грани с плоскостью основания правильной шестиугольной пирамиды равен β . Найдите плоский угол при вершине пирамиды.
Прислать комментарий     Решение


Страница: << 172 173 174 175 176 177 178 >> [Всего задач: 2404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .