ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 169 170 171 172 173 174 175 >> [Всего задач: 2404]      



Задача 109098

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Ортогональная проекция (прочее) ]
Сложность: 3
Классы: 10,11

Известно, что некоторая точка M равноудалена от двух пересекающихся прямых m и n . Докажите, что ортогональная проекция точки M на плоскость прямых m и n лежит на биссектрисе одного из углов, образованных прямыми m и n .
Прислать комментарий     Решение


Задача 109099

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Ортогональная проекция (прочее) ]
[ Вневписанные окружности ]
Сложность: 3
Классы: 10,11

Точка M равноудалена от трёх прямых AB , BC и AC . Докажите, что ортогональная проекция точки M на плоскость ABC является центром вписанной окружности либо одной из вневписанных окружностей треугольника ABC .
Прислать комментарий     Решение


Задача 109100

Темы:   [ Теорема о трех перпендикулярах ]
[ Перпендикулярность прямой и плоскости (прочее) ]
Сложность: 3
Классы: 10,11

Точка M находится на расстояниях 5 и 4 от двух параллельных прямых m и n и на расстоянии 3 от плоскости, проходящей через эти прямые. Найдите расстояние между прямыми m и n .
Прислать комментарий     Решение


Задача 109101

Темы:   [ Теорема о трех перпендикулярах ]
[ Ортогональная проекция (прочее) ]
Сложность: 3
Классы: 10,11

Прямая l проходит через точку, лежащую на окружности с центром O и радиусом r . Известно, что ортогональной проекцией прямой l на плоскость окружности является прямая, касающаяся этой окружности. Найдите расстояние от точки O до прямой l .
Прислать комментарий     Решение


Задача 109102

Темы:   [ Куб ]
[ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 10,11

Докажите, что в кубе $ABCDA_1B_1C_1D_1$ прямые $AC_1$ и $BD$ перпендикулярны.
Прислать комментарий     Решение


Страница: << 169 170 171 172 173 174 175 >> [Всего задач: 2404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .