Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Можно ли n раз рассадить  2n + 1  человека за круглым столом так, чтобы никакие двое не сидели рядом более одного раза, если  а)  n = 5;  б)  n = 10?

Вниз   Решение


M и N — точки пересечения двух окружностей с центрами O1 и O2. Прямая O1M пересекает 1-ю окружность в точке A1, а 2-ю в точке A2. Прямая O2M пересекает 1-ю окружность в точке B1, а 2-ю в точке B2. Доказать, что прямые A1B1, A2B2 и MN пересекаются в одной точке.

ВверхВниз   Решение


Пусть $AL$ — биссектриса треугольника $ABC$, точка $D$ — ее середина, $E$ — проекция $D$ на $AB$. Известно, что $AC = 3 AE$. Докажите, что треугольник $CEL$ равнобедренный.

ВверхВниз   Решение


В алфавите племени Мумбу-Юмбу есть лишь две буквы A и Б. Два разных слова обозначают одно и то же понятие, если одно из них может быть получено из другого с помощью следующих операций:
  1) в любом месте слова комбинацию букв АБА можно заменить на БАБ;
  2) из любого места можно выкидывать две одинаковые буквы, идущие подряд.
  а) Может ли дикарь племени сосчитать все пальцы на своей руке?
  б) А дни недели?

ВверхВниз   Решение


В трапеции ABCD одно основание в два раза больше другого. Меньшее основание равно c. Диагонали трапеции пересекаются под прямым углом, а отношение боковых сторон равно k. Найдите боковые стороны трапеции.

ВверхВниз   Решение


Пусть AE и CD – биссектрисы треугольника ABC,  ∠BED = 2∠AED  и  ∠BDE = 2∠EDC.  Докажите, что треугольник ABC – равнобедренный.

ВверхВниз   Решение


Слово – любая конечная последовательность букв русского алфавита. Выясните, сколько различных слов можно составить из слов
  а) ВЕКТОР;
  б) ЛИНИЯ;
  в) ПАРАБОЛА;
  г) БИССЕКТРИСА;
  д) МАТЕМАТИКА.

ВверхВниз   Решение


m и n – натуральные числа,  m < n.  Докажите, что  

ВверхВниз   Решение


Найдите площадь равнобедренного треугольника, если высота, опущенная на основание, равна 10, а высота, опущенная на боковую сторону, равна 12.

ВверхВниз   Решение


Автор: Белухов Н.

Даны выпуклый многоугольник $M$ и простое число $p$. Оказалось, что существует ровно $p$ способов разбить $M$ на равносторонние треугольники со стороной 1 и квадраты со стороной 1.
Докажите, что длина одной из сторон многоугольника $M$ равна  $p$ – 1.

ВверхВниз   Решение


В окружности радиуса R проведены хорда AB и диаметр AC. Хорда PQ, перпендикулярная диаметру AC, пересекает хорду AB в точке M. Известно, что AB = a, PM : MQ = 3. Найдите AM.

ВверхВниз   Решение


Точки A, B, C, D лежат на одной прямой. Докажите, что если (ABCD) = 1, то либо A = B, либо C = D.

ВверхВниз   Решение


Раскрашенный в чёрный и белый цвета кубик с гранью в одну клетку поставили на одну из клеток шахматной доски и прокатили по ней так, что кубик побывал на каждой клетке ровно по одному разу. Можно ли так раскрасить кубик и так прокатить его по доске, чтобы каждый раз цвета клетки и соприкоснувшейся с ней грани совпадали?

ВверхВниз   Решение


Прямая $\ell$, параллельная стороне $BC$ треугольника $ABC$, касается его вписанной окружности и пересекает его описанную окружность в точках $D$ и $E$. Пусть $I$ – центр вписанной окружности треугольника $ABC$. Докажите, что $AI^2 = AD\cdot AE$.

ВверхВниз   Решение


Точка M – середина стороны CD параллелограмма ABCD, точка H – проекция вершины B на прямую AM.
Докажите, что треугольник CBH равнобедренный.

ВверхВниз   Решение


Сколькими способами можно выбрать из 15 различных слов набор, состоящий не более чем из пяти слов?

ВверхВниз   Решение


Сторона BC четырёхугольника ABCD является диаметром окружности, описанной около этого четырёхугольника. Найдите сторону AB, если BC = 8, BD = 4$ \sqrt{2}$, $ \angle$DCA : $ \angle$ACB = 2 : 1.

ВверхВниз   Решение


При помощи задачи 60752 докажите, что существует бесконечно много простых чисел вида  p = 4k + 1.

ВверхВниз   Решение


Автор: Фольклор

Докажите, что существует бесконечно много простых чисел.

ВверхВниз   Решение


Докажите, что  pn+1 ≤ 22n + 1,  где pnn-е простое число.

ВверхВниз   Решение


Около трапеции ABCD описана окружность, центр которой лежит на основании AD. Найдите площадь трапеции, если AB = $ {\frac{3}{4}}$, AC = 1.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 126]      



Задача 109808

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Целочисленные решетки (прочее) ]
[ Раскраски ]
[ Геометрия на клетчатой бумаге ]
Сложность: 3+
Классы: 7,8,9

Каждая целочисленная точка плоскости окрашена в один из трех цветов, причем все три цвета присутствуют. Докажите, что найдется прямоугольный треугольник с вершинами трех разных цветов.
Прислать комментарий     Решение


Задача 32124

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Правильный тетраэдр ]
Сложность: 3+
Классы: 8,9,10

В булке за 10 копеек оказался запечен изюм двух сортов. Докажите, что внутри булки найдутся две такие точки, удаленные на расстояние 1 см, что они либо не принадлежат никаким из изюмин, либо принадлежат изюминам одного сорта.
Прислать комментарий     Решение


Задача 58081

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Принцип Дирихле (углы и длины) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 7,8,9

Внутри равностороннего треугольника со стороной 1 расположено пять точек. Докажите, что расстояние между некоторыми двумя из них меньше 0, 5.
Прислать комментарий     Решение


Задача 107702

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Куб ]
[ Свойства частей, полученных при разрезаниях ]
Сложность: 3+
Классы: 8,9,10,11

Поверхность кубика Рубика 3 x 3 x 3 состоит из 54 клеток. Какое наибольшее количество клеток можно отметить так, чтобы отмеченные клетки не имели общих вершин?
Прислать комментарий     Решение


Задача 34905

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Отношения площадей (прочее) ]
[ Площадь трапеции ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Каждая из 9 прямых разбивает квадрат на два четырхугольника, площади которых относятся как 2:3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 126]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .