Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 33 задачи
Версия для печати
Убрать все задачи

Внутри треугольника ABC взята такая точка O, что  ∠ABO = ∠CAO,  ∠BAO = ∠BCO,  ∠BOC = 90°.  Найдите отношение  AC : OC.

Вниз   Решение


Восстановите треугольник ABC по прямым lb и lc, содержащим биссектрисы углов B и C, и основанию биссектрисы угла A – точке L1.

ВверхВниз   Решение


Улитке нужно забраться на дерево высотой 10 метров. За день она поднимается на 4 метра, а за ночь сползает на 3.
Когда она доползет до цели, если стартовала улитка утром в понедельник?

ВверхВниз   Решение


Остроугольный треугольник ABC  (AB < AC)  вписан в окружность Ω. Пусть M – точка пересечения его медиан, а AH – высота. Луч MH пересекает Ω в точке A'. Докажите, что описанная окружность треугольника A'HB касается прямой AB.

ВверхВниз   Решение


Автор: Ивлев Б.М.

Каждая из девяти прямых разбивает квадрат на два четырёхугольника, площади которых относятся как 2 : 3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.

ВверхВниз   Решение


Автор: Ивлев Б.М.

Для любого натурального числа n существует составленное из цифр 1 и 2 число, делящееся на 2n. Докажите это.
(Например, на 2 делится 2, на 4 делится 12, на 8 делится 112, на 16 делится 2112...)

ВверхВниз   Решение


Автор: Mahdi Etesami Fard

Ортоцентр H треугольника ABC лежит на вписанной в треугольник окружности.
Докажите, что три окружности с центрами A, B, C, проходящие через H, имеют общую касательную.

ВверхВниз   Решение


Биссектрисы $AA_1, BB_1, CC_1$ треугольника $ABC$ пересекаются в точке $I$. Серединный перпендикуляр к отрезку $BB_1$ пересекает прямые $AA_1$, $CC_1$ в точках $A_0$, $C_0$. Докажите, что описанные окружности треугольников $A_0IC_0$ и $ABC$ касаются.

ВверхВниз   Решение


Марина купила тур в Банановую страну с 5 по 22 октября. Ввозить и вывозить бананы через границу запрещено. Банановый король в начале каждого месяца издаёт указ о ценах. Цена одного банана в местной валюте на нужные числа октября приведена в таблице:

$\,$5 $\,$6 $\,$7 $\,$8 $\,$9 10 11 12 13 14 15 16 17 18 19 20 21 22
8,1 $\,$8 $\,$7 8,1 $\,$9 $\,$8 8,1 7,2 $\,$7 $\,$8 $\,$9 8,1 $\,$9 $\,$8 $\,$9 8,2 $\,$7 7,1

Марина хочет ежедневно съедать по одному банану. Она любит только зелёные бананы, поэтому согласна съесть банан только в течение 4 дней после покупки. Например, банан, купленный 5 октября, Марина согласна съесть 5, 6, 7 или 8 октября. Марина может запасаться бананами, когда они подешевле.

В какие дни по сколько бананов надо покупать Марине, чтобы потратить как можно меньше денег?

ВверхВниз   Решение


Автор: Ильясов С.

В треугольник ABC вписана окружность ω с центром в точке I. Около треугольника AIB описана окружность Г. Окружности ω и Г пересекаются в точках X и Y. Общие касательные к окружностям ω и Г пересекаются в точке Z. Докажите, что описанные окружности треугольников ABC и XYZ, касаются.

ВверхВниз   Решение


Автор: Золотых А.

Каждая сторона треугольника разделена на три равные части. Точки деления служат вершинами двух треугольников, пересечение которых – шестиугольник. Найдите площадь этого шестиугольника, если площадь данного треугольника равна S.

ВверхВниз   Решение


Автор: Mahdi Etesami Fard

Окружность $\omega$, вписанная в треугольник $ABC$, касается сторон $BC$, $CA$ и $AB$ в точках $D$, $E$ и $F$ соответственно. Перпендикуляр из $E$ на $DF$ пересекает прямую $BC$ в точке $X$, а перпендикуляр из $F$ на $DE$ пересекает $BC$ в точке $Y$. Отрезок $AD$ пересекает $\omega$ во второй раз в точке $Z$. Докажите, что описанная окружность треугольника $XYZ$ касается $\omega$.

ВверхВниз   Решение


Автор: Панов М.Ю.

В треугольнике $ABC$ провели биссектрису $CL$. Серединный перпендикуляр к стороне $AC$ пересекает отрезок $CL$ в точке $K$.
Докажите, что описанные окружности треугольников $ABC$ и $AKL$ касаются.

ВверхВниз   Решение


Автор: Нетай И.В.

Сто мудрецов хотят проехать на электричке из 12 вагонов от первой до 76-й станции. Они знают, что на первой станции в два вагона электрички сядут два контролёра. После четвёртой станции на каждом перегоне один из контролёров будет переходить в соседний вагон, причём они "ходят" по очереди. Мудрец видит контролёра, только если он в соседнем вагоне или через вагон. На каждой станции каждый мудрец может перебежать по платформе не далее чем на три вагона (например, из 7-го вагона мудрец может добежать до любого вагона с номером от 4 до 10 и сесть в него). Какое максимальное число мудрецов сможет ни разу не оказаться в одном вагоне с контролёром, как бы контролёры ни перемещались? (Никакой информации о контролёрах, кроме указанной в задаче, мудрец не получает. Мудрецы договариваются о стратегии заранее.)

ВверхВниз   Решение


Автор: Mahdi Etesami Fard

Окружность $\omega_1$ проходит через вершину $A$ параллелограмма $ABCD$ и касается лучей $CB$, $CD$. Окружность $\omega_2$ касается лучей $AB$, $AD$ и касается внешним образом $\omega_1$ в точке $T$. Докажите, что $T$ лежит на диагонали $AC$.

ВверхВниз   Решение


В параллелограмме ABCD на диагонали AC взята точка E, причём  AE : EC = 1 : 3,  а на стороне AD взята такая точка F, что  AF : FD = 1 : 2.  Найдите площадь четырёхугольника ABGE, где G – точка пересечения прямой FE со стороной BC, если известно, что площадь параллелограмма ABCD равна 24.

ВверхВниз   Решение


Дано натуральное число $N$. Вера делает с ним следующие операции: сначала прибавляет 3 до тех пор, пока получившееся число не станет делиться на 5 (если изначально $N$ делится на 5, то ничего прибавлять не надо). Получившееся число Вера делит на 5. Далее делает эти же операции с новым числом, и так далее. Из каких чисел такими операциями нельзя получить 1?

ВверхВниз   Решение


Автор: Фомин С.В.

Среди десятизначных чисел каких больше: тех, которые можно представить как произведение двух пятизначных чисел, или тех, которые нельзя так представить?

ВверхВниз   Решение


Автор: Тимохин М.

Продолжения боковых сторон трапеции ABCD пересекаются в точке P, а её диагонали – в точке Q. Точка M на меньшем основании BC такова, что  AM = MD.  Докажите, что  ∠PMB = ∠QMB.

ВверхВниз   Решение


Автор: Фомин С.В.

Имеется два трёхлитровых сосуда. В одном 1 л воды, в другом – 1 л двухпроцентного раствора поваренной соли. Разрешается переливать любую часть жидкости из одного сосуда в другой, после чего перемешивать. Можно ли за несколько таких переливаний получить полуторапроцентный раствор в том сосуде, в котором вначале была вода?

ВверхВниз   Решение


Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Верно ли, что все числа равны?

ВверхВниз   Решение


Миша сложил из кубиков куб 3×3×3. Затем некоторые соседние по грани кубики он склеил друг с другом. Получилась цельная конструкция из 16 кубиков, остальные кубики Миша убрал. Обмакнув конструкцию в чернила, он поочерёдно приложил её к бумаге тремя гранями. Вышло слово КОТ (см. рис.). Что получится, если отпечатать грань, противоположную букве "О"?

ВверхВниз   Решение


Автор: Пойа Дж.

В любой арифметической прогрессии  a,  a + d,  a + 2d,  ...,  a + nd,  ...,  составленной из натуральных чисел, есть бесконечно много членов, в разложении которых на простые множители входят в точности одни и те же простые числа. Докажите это.

ВверхВниз   Решение


Автор: Хомодов А.

а) Докажите, что в любом многоугольнике, кроме треугольника, есть хотя бы одна диагональ, целиком лежащая внутри него.
б) Выясните, какое наименьшее число таких диагоналей может иметь n-угольник.

ВверхВниз   Решение


К описанной окружности треугольника $ABC$ проведены касательные в точках $B$ и $C$. Лучи $CC_1$, $BB_1$, где $B_1$ и $C_1$ – середины сторон $AC$ и $AB$, пересекают эти касательные в точках $K$ и $L$ соответственно. Докажите, что $\angle BAK=\angle CAL$.

ВверхВниз   Решение


Автор: Фомин С.В.

Дано 27 кубиков одинакового размера: 9 красных, 9 синих и 9 белых. Можно ли сложить из них куб таким образом, чтобы каждый столбик из трёх кубиков содержал кубики ровно двух цветов? (Рассматриваются столбики, параллельные всем ребрам куба, всего 27 столбиков.)

ВверхВниз   Решение


На стороне $AB$ квадрата $ABCD$ вне его построен равнобедренный треугольник $ABE$ ($AE=BE$). Пусть $M$ – середина $AE$, $O$ – точка пересечения $AC$ и $BD$, $K$ – точка пересечения $ED$ и $OM$. Докажите, что $EK=KO$.

ВверхВниз   Решение


Автор: Фомин С.В.

Имеется 68 монет, причём известно, что любые две монеты различаются по весу.
За 100 взвешиваний на двухчашечных весах без гирь найти самую тяжелую и самую лёгкую монеты.

ВверхВниз   Решение


  а) В ведро налили 12 литров молока. Пользуясь лишь сосудами в 5 и 7 л, разделите молоко на две равные части.
  б) Решите общую задачу: при каких a и b можно разделить пополам  a + b  литров молока, пользуясь лишь сосудами в a литров, b литров и  a + b  литров?
За одно переливание из одного сосуда в другой можно вылить всё, что там есть, или долить второй сосуд до верха.

ВверхВниз   Решение


Автор: Тимохин М.

Дан правильный 2n-угольник A1A1...A2n с центром O, причём  n ≥ 5.  Диагонали A2An–1 и A3An пересекаются в точке F, а A1A3 и A2A2n–2 – в точке P.
Докажите, что  PF = PO.

ВверхВниз   Решение


Кабинки горнолыжного подъёмника занумерованы подряд числами от 1 до 99. Игорь сел в кабинку №42 подъёмника у подножия горы и в какой-то момент заметил, что он поравнялся с движущейся вниз кабинкой №13 (см. рисунок), а через 15 секунд его кабинка поравнялась с кабинкой №12.
Через какое время Игорь прибудет на вершину горы?

ВверхВниз   Решение


В треугольнике $ABC$ проведены высоты $BB_1$, $CC_1$ и диаметр $AD$ описанной окружности. Прямые $BB_1$ и $DC_1$ пересекаются в точке $E$, а прямые $CC_1$ и $DB_1$ – в точке $F$. Докажите, что $\angle CAE=\angle BAF$.

ВверхВниз   Решение


В однокруговом хоккейном турнире принимало участие 2016 команд. По регламенту турнира за победу даётся 3 очка, за поражение 0 очков, а в случае ничьей назначается дополнительное время, победитель которого получает 2 очка, а проигравший – 1 очко. По окончании турнира Остапу Бендеру сообщили количество очков, набранных каждой командой, на основании чего он сделал вывод, что не менее N матчей закончились дополнительным временем. Найдите наибольшее возможное значение N.

Вверх   Решение

Задача 65677
Темы:    [ Турниры и турнирные таблицы ]
[ Вспомогательная раскраска (прочее) ]
[ Ориентированные графы ]
[ Деревья ]
[ Принцип крайнего (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

В однокруговом хоккейном турнире принимало участие 2016 команд. По регламенту турнира за победу даётся 3 очка, за поражение 0 очков, а в случае ничьей назначается дополнительное время, победитель которого получает 2 очка, а проигравший – 1 очко. По окончании турнира Остапу Бендеру сообщили количество очков, набранных каждой командой, на основании чего он сделал вывод, что не менее N матчей закончились дополнительным временем. Найдите наибольшее возможное значение N.


Решение

  Рассмотрим полный ориентированный граф, вершинами которого будут команды – участницы турнира, а ребро между двумя вершинами будет вести от победителя в матче между ними к проигравшему. Покрасим ребро в красный цвет, если встреча закончилась в дополнительное время, и в синий в противном случае.
  Зафиксируем количество набранных очков командами и посмотрим на графы, соответствующие данному распределению очков. Среди всех таких графов выберем граф G, в котором количество красных ребер минимально.

  Лемма. В красном подграфе графа G нет следующих подграфов:
    1) неориентированных циклов;
    2) ориентированных путей длины 2;
    3) вершин степени 3 и более;
    4) неориентированных путей длины 4.
  Доказательство. Покажем, как можно уменьшить количество красных рёбер, если есть описанные выше подграфы.
  1. Предположим, что в G есть неориентированный красный цикл. Тогда зададим на цикле направление обхода, совпадающее с направлением одного из рёбер, и сделаем следующую операцию: рёбра цикла, которые были ориентированы по направлению обхода, перекрасим в синий, а ориентированные против направления цикла переориентируем по направлению. После такого преобразования распределение очков не поменяется, так как для каждой команды количество очков во встрече с одним из соседей уменьшится на 1, а во встрече с другим увеличится на 1. Количество красных рёбер уменьшилось.

  2. Предположим, что в G есть красный ориентированный путь длины 2. Тогда можно считать, что ребро между началом пути и концом – синее. Если это ребро было направлено от начала к концу, то поменяем цвет всех трёх рёбер, а если из конца в начало, то поменяем цвет и ориентацию всех трёх рёбер. Такое преобразование не меняет количество очков, набранных командой, но уменьшает количество красных рёбер.
  3. Предположим, что в G есть вершина A красной степени 3 или более. Тогда выберем трёх её соседей B, C, D. При этом можно считать, что все три красных ребра исходят из вершины A (случай, когда направления различны, невозможен из-за отсутствия пути длины 2, а случай трёх входящих аналогичен), а рёбра между вершинами B, C, D синие.
  Не ограничивая общности, можно считать, что рёбра ведут из B в C и из C в D. Получается два случая: в первом ребро ведёт из B в D, а во втором из D в B.
  Cотрём все ребра между A, B, C, D и нарисуем заново следующим образом.
  Распределение очков не поменялось, а количество красных рёбер уменьшилось.

  4. Предположим, что есть неориентированный красный путь длины 4: A, B, C, D, E. Можно считать, что красные рёбра ориентированы следующим образом: AB, CB, CD, ED, а оставшиеся рёбра синие.
  Если A обыграла D, то можно изменить рёбра AB, BC, CD, AD следующим образом: рёбра AB, CD сделаем синими, а рёбра AD, BC – красными. Распределение очков не поменялось, а количество красных рёбер уменьшилось, поэтому далее можно считать, что D выиграла у A, а B выиграла у E.
  Если B обыграла D, то изменим рёбра AB, AD, BC, BD, CD следующим образом: рёбра CD, DB, BA сделаем синими, а AD, BC – красными.
  Если D обыграла B, то изменим рёбра BC, BD, BE, CD, DE: рёбра CB, BD, DE сделаем синими, а EB, DC – красными.
  Распределение очков не поменялось, количество красных рёбер уменьшилось.

  Таким образом граф на красных рёбрах без ориентации является лесом, в котором каждое дерево является цепочкой не более чем из четырёх вершин. Значит, количество красных рёбер равно  2016 – T,  где T – количество деревьев в графе на красных рёбрах. Так как в каждом дереве не более четырёх вершин,  T ≥ 504,  то есть  N ≤ 1512.
  Рассмотрим турнир из четырёх команд A, B, C, D. Пусть в нём рёбра AB, AD, CD – красные, а рёбра AC, BC, BD – синие. Тогда команды A, B набрали по 7 очков, а команды C, D – по 2.
  Наоборот, при таком распределении очков должно быть сыграно не менее трёх овертаймов, так как в дополнительное время должны закончиться матчи между A и B и между C и D, так как A и B не могли проиграть в основное время, а C и D не могли победить в основное время. Если все оставшиеся матчи завершились в основное время, то суммарное количество очков у A и B будет кратно 3, что не так.
  Разобьём 2016 команд на четвёрки  (A1, B1, C1, D1,), ..., (A504, B504, C504, D504).  Пусть внутри четвёрок матчи закончились так, как описано выше, а при
i > j  команда из i-й четвёрки побеждает команду из j-й в основное время.
  Тогда из полученного распределения очков можно сделать вывод, что каждая команда из i-й четвёрки побеждает каждую команду из j-й в основное время. Действительно, команды 504-й четвёрки набрали в сумме ровно 18 очков. Поскольку в каждой игре разыгрывается три очка, все эти очки набраны в играх внутри четвёрки. Значит, команды этой чётверки проиграли всем остальным командам в основное время. Команды 503-й четвёрки набрали в сумме  18 + 12·4 очков,  причём 48 очков набраны против команд 504-й четвёрки. Значит, оставшиеся 18 очков набраны внутри этой четвёрки, а всем командам из оставшихся 502 четвёрок оно проиграли в основное время. И т. д.
  Кроме того, внутри каждой четвёрки будет распределение очков 7, 7, 2, 2, поэтому будет не менее трёх овертаймов, а значит, всего овертаймов не менее 1512.


Ответ

N = 1512.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Год 2016
Номер 79
класс
Класс 10
задача
Номер 6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .