Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Черепанов Е.

Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Паутина имеет вид клетчатой сетки 100×100 узлов (другими словами, это сетка 99×99 клеток). В каком-то её углу сидит паук, а в некоторых 100 узлах к паутине приклеились мухи. За ход паук может переместиться в любой соседний с ним узел. Может ли паук гарантированно съесть всех мух, затратив не более
  а) 2100 ходов;
  б) 2000 ходов?

Вниз   Решение


Графики квадратного трёхчлена и его производной разбивают координатную плоскость на четыре части. Сколько корней имеет этот квадратный трёхчлен?

ВверхВниз   Решение


Решите уравнение x3+(log25+log32+log53)x=(log23+log35+log52)x2+1.

ВверхВниз   Решение


В равнобедренной трапеции проведена диагональ. По контуру каждого из получившихся двух треугольников ползёт свой жук. Скорости движения жуков постоянны и одинаковы. Жуки не меняют направления обхода своих контуров, и по диагонали трапеции они ползут в разных направлениях. Докажите, что при любых начальных положениях жуков они когда-нибудь встретятся.

ВверхВниз   Решение


Четыре окружности радиуса R пересекаются по три в точках M и N, и по две в точках A, B, C и D. Докажите что ABCD — параллелограмм.

ВверхВниз   Решение


Остроугольный треугольник ABC вписан в окружность Ω. Пусть H и M – точка пересечения высот и середина стороны BC соответственно. Прямая HM пересекает окружность ω, описанную около треугольника BHC, в точке NH. На дуге BC окружности ω, не содержащей точку H, нашлась точка P такая, что HMP=90. Отрезок PM пересекает Ω в точке Q. Точки B и C симметричны точке A относительно точек B и C соответственно. Докажите, что описанные окружности треугольников ABC и PQN касаются.

ВверхВниз   Решение


Многоугольник, описанный около окружности радиуса r, разрезан на треугольники (произвольным образом). Докажите, что сумма радиусов вписанных окружностей этих треугольников больше r.

ВверхВниз   Решение


Рассмотрим на клетчатой плоскости такие ломаные с началом в точке (0, 0) и вершинами в целых точках, что каждое очередное звено идёт по сторонам клеток либо вверх, либо вправо. Каждой такой ломаной соответствует червяк – фигура, состоящая из клеток плоскости, имеющих хотя бы одну общую точку с этой ломаной. Докажите, что червяков, которые можно разбить на двуклеточные доминошки ровно  n>2  различными способами, столько же, сколько натуральных чисел, меньших n и взаимно простых с n. (Червяки разные, если состоят из разных наборов клеток.)

ВверхВниз   Решение


Автор: Тутеску Л.

Решите систему уравнений:
   (x3 + x4 + x5)5 = 3x1,
   (x4 + x5 + x1)5 = 3x2,
   (x5 + x1 + x2)5 = 3x3,
   (x1 + x2 + x3)5 = 3x4,
   (x2 + x3 + x4)5 = 3x5.

ВверхВниз   Решение


Выпуклый четырехугольник ABCD таков, что BAD=2BCD и AB=AD. Пусть P – такая точка, что ABCP – параллелограмм. Докажите, что CP=DP.

ВверхВниз   Решение


Около треугольника ABC описали окружность. A1 – точка пересечения с нею прямой, параллельной BC и проходящей через A. Точки B1 и C1 определяются аналогично. Из точек A1, B1, C1 опустили перпендикуляры на BC, CA, AB соответственно. Докажите, что эти три перпендикуляра пересекаются в одной точке.

ВверхВниз   Решение


Дана равнобокая трапеция ABCD (AB=CD). На описанной около неё окружности выбирается точка P так, что отрезок CP пересекает основание AD в точке Q. Пусть L – середина QD. Докажите, что длина диагонали трапеции не превосходит суммы расстояний от середин её боковых сторон до любой точки прямой PL.

ВверхВниз   Решение


Даны две окружности ω1 и ω2, пересекающиеся в точке A, и прямая a. Пусть BC – произвольная хорда окружности ω2, параллельная a, а E и F – вторые точки пересечения прямых AB и AC с ω1. Найдите геометрическое место точек пересечения прямых BC и EF.

ВверхВниз   Решение


Автор: Шмаров В.

Вписанная и вневписанная сферы треугольной пирамиды ABCD касаются её грани BCD в различных точках X и Y.
Докажите, что треугольник AXY тупоугольный.

ВверхВниз   Решение


На координатной плоскости расположили треугольник так, что его сдвиги на векторы с целочисленными координатами не перекрываются.
  а) Может ли площадь такого треугольника быть больше ½?
  б) Найдите наибольшую возможную площадь такого треугольника.

Вверх   Решение

Все задачи автора

Страница: 1 2 >> [Всего задач: 6]      



Задача 35558

Темы:   [ Комбинаторика (прочее) ]
[ Принцип крайнего ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Оценка + пример ]
Сложность: 3
Классы: 9,10,11

Пусть M – конечное множество чисел. Известно, что среди любых трёх его элементов найдутся два, сумма которых принадлежит M.
Какое наибольшее число элементов может быть в M?

Прислать комментарий     Решение

Задача 98455

Темы:   [ Неравенства для площади треугольника ]
[ Площадь треугольника (через высоту и основание) ]
[ Монотонность, ограниченность ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3+
Классы: 8,9

Пусть ABC – остроугольный треугольник, C' и A' – произвольные точки на сторонах AB и BC соответственно, B' – середина стороны AC.
  а) Докажите, что площадь треугольника A'B'C' не больше половины площади треугольника ABC.
  б) Докажите, что площадь треугольника A'B'C' равна четверти площади треугольника ABC тогда и только тогда, когда хотя бы одна из точек A', C' совпадает с серединой соответствующей стороны.

Прислать комментарий     Решение

Задача 110005

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Делимость чисел. Общие свойства ]
[ Арифметические действия. Числовые тождества ]
Сложность: 3+
Классы: 8,9,10

Существуют ли 10 таких различных целых чисел, что все суммы, составленные из девяти из них – точные квадраты?

Прислать комментарий     Решение

Задача 110046

Темы:   [ Таблицы и турниры (прочее) ]
[ Раскраски ]
[ Симметрия и инволютивные преобразования ]
[ Уравнения в целых числах ]
Сложность: 4
Классы: 8,9,10

Клетки таблицы 200×200 окрашены в чёрный и белый цвета так, что чёрных клеток на 404 больше, чем белых.
Докажите, что найдётся квадрат 2×2, в котором число белых клеток нечётно.

Прислать комментарий     Решение

Задача 98555

Темы:   [ Параллельный перенос (прочее) ]
[ Геометрия на клетчатой бумаге ]
[ Центральная симметрия помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Экстремальные свойства треугольника (прочее) ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

На координатной плоскости расположили треугольник так, что его сдвиги на векторы с целочисленными координатами не перекрываются.
  а) Может ли площадь такого треугольника быть больше ½?
  б) Найдите наибольшую возможную площадь такого треугольника.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .