ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Какое наименьшее число карточек спортлото (6 из 49) надо купить, чтобы наверняка хоть в одной из них был угадан хоть один номер? Существуют ли такие натуральные n и k, что десятичная запись числа 2n начинается числом 5k, а десятичная запись числа 5n начинается числом 2k? На плоскости расположен квадрат и невидимыми чернилами нанесена точка P. Человек в специальных очках видит точку. Если провести прямую, то он отвечает на вопрос, по какую сторону от неё лежит P (если P лежит на прямой, то он говорит, что P лежит на прямой). Имеется железная гиря в 6 кг, сахар и невесомые пакеты в неограниченном количестве, а также нестандартные весы с двумя чашами: весы находятся в равновесии, если грузы на левой и правой чашах относятся как 3 : 4. За одно взвешивание можно положить на весы любые уже имеющиеся грузы и добавить на одну из чаш пакет с таким количеством сахара, чтобы чаши уравновесились (такие пакеты с сахаром можно использовать при дальнейших взвешиваниях). Удастся ли отмерить 1 кг сахара? Положительные числа A, B, C и D таковы, что система уравнений В ряд выписаны действительные числа a1, a2, a3, ..., a1996. Докажите, что можно выделить одно или несколько стоящих рядом чисел так, что их сумма будет отличаться от целого числа меньше, чем на 0,001. Отрезки $AA', BB'$ и $CC'$ с концами на сторонах остроугольного треугольника $ABC$ пересекаются в точке $P$ внутри треугольника. На каждом из этих отрезков как на диаметре построена окружность, в которой перпендикулярно этому диаметру проведена хорда через точку $P$. Оказалось, что три проведённые хорды имеют одинаковую длину. Докажите, что $P$ – точка пересечения высот треугольника $ABC$. Дан отрезок длины В компанию из n человек пришёл журналист. Ему известно, что в этой компании есть человек Z, который знает всех остальных членов компании, но его не знает никто. Журналист может к каждому члену компании обратиться с вопросом: "Знаете ли вы такого-то?" Существует ли такое натуральное n, что десятичная запись числа 2n начинается цифрой 5, а десятичная запись числа 5n начинается цифрой 2? Можно ли разбить все пространство на правильные тетраэдры и октаэдры? a) Написаны 2007 натуральных чисел, больших 1. Докажите, что удастся зачеркнуть одно число так, чтобы произведение оставшихся можно было представить в виде разности квадратов двух натуральных чисел. б) Написаны 2007 натуральных чисел, больших 1, одно из которых равно 2006. Оказалось, что есть только одно такое число среди написанных, что произведение оставшихся представляется в виде разности квадратов двух натуральных чисел. Докажите, что это число – 2006. Имеется выпуклый многогранник со 100 рёбрами. Все его вершины срезали плоскостями-ножами близко от самих вершин (то есть так, чтобы плоскости-ножи не пересекались друг с другом внутри или на границе многогранника). Найдите у полученного многогранника а) Для каждого трёхзначного числа берём произведение его цифр, а затем эти
произведения, вычисленные для всех трёхзначных чисел, складываем. Сколько получится? Можно ли бумажный круг с помощью ножниц перекроить в квадрат той же площади? На сетке из равносторонних треугольников построен угол ACB (см. рисунок). Найдите его величину. Легко оклеить поверхность куба шестью ромбами (например, шестью квадратами). А можно ли оклеить поверхность куба (без щелей и наложений) менее чем шестью ромбами (не обязательно одинаковыми)? Остроугольный треугольник разбили медианой на два меньших треугольника. Верно ли, что на графике функции y = x³ можно отметить такую точку A, а на графике функции y = x³ + |x| + 1 – такую точку B, что расстояние AB не превысит 1/100? На клетчатой бумаге отмечены 6 точек (см. рисунок). Проведите три прямые так, чтобы одновременно выполнялись три условия:
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 49]
Вася положил некую сумму в рублях в банк под 20% годовых. Петя взял другую сумму в рублях, перевел её в доллары и положил в банк под 10% годовых. За год цена одного доллара в рублях увеличилась на 9,5%. Когда через год Петя перевел свой вклад в рубли, то оказалось, что за год Вася и Петя получили одинаковую прибыль. У кого первоначально была сумма больше – у Васи или у Пети?
Известно, что ЖЖ + Ж = МЁД. На какую цифру оканчивается произведение: В·И·Н·Н·И·П·У·Х (разными буквами обозначены разные цифры, одинаковыми – одинаковые)?
Есть пять батареек, из которых три заряжены, а две разряжены. Фотоаппарат работает от двух заряженных батареек. Покажите, как за четыре попытки можно гарантированно включить фотоаппарат.
В парке два года проводили озеленительные работы: спиливали старые и сажали новые деревья. Руководители проекта заявляют, что за два года средний прирост количества деревьев составляет $15\%$. Экологи говорят, что за два года количество деревьев уменьшилось на $10\%$. Может ли и то и другое быть правдой? (Если количество деревьев за год увеличилось, то прирост считается положительным, если уменьшилось – то отрицательным. Средний прирост за два года руководители вычисляют как $(a+b)/2$, где $a$ – прирост за первый год, $b$ – за второй.)
На клетчатой бумаге отмечены 6 точек (см. рисунок). Проведите три прямые так, чтобы одновременно выполнялись три условия:
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 49]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке