Страница:
<< 180 181 182 183
184 185 186 >> [Всего задач: 1984]
На сторонах треугольника
ABC вне его построены правильные треугольники
ABC1,
BCA1 и
CAB1. Доказать, что

+

+

=

.
Три окружности радиусов 3, 4, 5 внешне касаются друг друга. Через точку касания
окружностей радиусов 3 и 4 проведена их общая касательная. Найти длину отрезка
этой касательной, заключённой внутри окружности радиуса 5.
На шахматной доске
20×20 стоят 10 ладей и один король. Король не
стоит под шахом и идёт из левого угла в правый верхний по диагонали. Ходят по
очереди: сначала король, потом одна из ладей. Доказать, что при любом
начальном расположении ладей и любом способе маневрирования ими король
попадёт под шах.
Докажите, что сумма расстояний от центра правильного семиугольника до всех его
вершин меньше, чем сумма расстояний до них от любой другой точки.
|
|
|
Сложность: 3+ Классы: 10,11
|
Не используя калькуляторов, таблиц и т.п., докажите неравенство
sin 1 < log
3
.
Страница:
<< 180 181 182 183
184 185 186 >> [Всего задач: 1984]