Страница:
<< 142 143 144 145
146 147 148 >> [Всего задач: 1957]
|
|
Сложность: 3+ Классы: 7,8,9
|
Некоторые из чисел
a1,
a2, ...,
a200 написаны синим
карандашом, а остальные — красным. Если стереть все красные числа, то
останутся все натуральные числа от 1 до 100, записанные в порядке возрастания.
Если же стереть все синие числа, то останутся все натуральные числа от 100 до 1,
записанные в порядке убывания. Докажите, что среди чисел
a1,
a2, ...,
a100 содержатся все натуральные числа от 1 до 100
включительно.
|
|
Сложность: 3+ Классы: 7,8,9
|
Путешественник посетил деревню, в котором каждый человек либо всегда говорит
правду, либо всегда лжёт. Жители деревни стали в круг, и каждый сказал
путешественнику про соседа справа, правдив ли он. На основании этих сообщений путешественник смог однозначно определить, какую долю от всех жителей деревни составляют лжецы. Определите и вы, чему она равна.
|
|
Сложность: 3+ Классы: 7,8,9
|
Пусть a, b, c – такие целые неотрицательные числа, что
28a + 30b + 31c = 365. Докажите, что a + b + c = 12.
|
|
Сложность: 3+ Классы: 8,9,10
|
Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону.
Докажите, что сумма длин всех отмеченных сторон не может быть меньше 1.
|
|
Сложность: 3+ Классы: 7,8,9
|
Обозначим через S(x) сумму цифр натурального числа x. Решить уравнения:
а) x + S(x) + S(S(x)) = 1993;
б) x + S(x) + S(S(x)) + S(S(S(x))) = 1993.
Страница:
<< 142 143 144 145
146 147 148 >> [Всего задач: 1957]