ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 199 200 201 202 203 204 205 >> [Всего задач: 1957]      



Задача 65689

Темы:   [ Взвешивания ]
[ Разбиения на пары и группы; биекции ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 4-
Классы: 10,11

Имеются чашечные весы, которые находятся в равновесии, если разность масс на их чашах не превосходит 1 г, а также гири массами ln 3, ln 4, ..., ln 79 г.
Можно ли разложить все эти гири на чаши весов так, чтобы весы находились в равновесии?

Прислать комментарий     Решение

Задача 66084

Темы:   [ Раскраски ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Все натуральные числа, бóльшие единицы, раскрасили в два цвета – синий и красный – так, что сумма каждых двух синих (в том числе одинаковых) – синяя, а произведение каждых двух красных (в том числе одинаковых) – красное. Известно, что при раскрашивании были использованы оба цвета и что число 1024 покрасили в синий цвет. Какого цвета при этом могло оказаться число 2017?

Прислать комментарий     Решение

Задача 66085

Темы:   [ Вписанные и описанные окружности ]
[ Отношение площадей треугольников с общим углом ]
[ Отношение площадей подобных треугольников ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 4-
Классы: 9,10

Точка O – центр описанной окружности Ω остроугольного треугольника ABC. Описанная окружность ω треугольника AOC вторично пересекает стороны AB и BC в точках E и F. Оказалось, что прямая EF делит площадь треугольника ABC пополам. Найдите угол B.

Прислать комментарий     Решение

Задача 66093

Темы:   [ Куб ]
[ Теорема Пифагора (прямая и обратная) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4-
Классы: 10,11

На гранях единичного куба отметили восемь точек, которые служат вершинами меньшего куба.
Найдите все значения, которые может принимать длина ребра этого куба.

Прислать комментарий     Решение

Задача 66110

Темы:   [ Невыпуклые многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Можно ли нарисовать на клетчатой бумаге многоугольник и поделить его на две равные части разрезом такой формы, как показано на рисунке
  а) слева;  б) в центре;  в) справа?

(Во всех пунктах разрез лежит внутри многоугольника, на границу выходят только концы разреза. Стороны многоугольника и звенья разреза идут по линиям сетки, маленькие звенья в два раза короче больших.)

Прислать комментарий     Решение

Страница: << 199 200 201 202 203 204 205 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .