Страница:
<< 201 202 203 204
205 206 207 >> [Всего задач: 1984]
|
|
|
Сложность: 4- Классы: 8,9,10
|
Точка O – центр описанной окружности остроугольного треугольника ABC. Прямая, перпендикулярная стороне AC, пересекает сторону BC и прямую AB в точках Q и P соответственно. Докажите, что точки B, O и середины отрезков AP и CQ лежат на одной окружности.
|
|
|
Сложность: 4- Классы: 8,9,10,11
|
Внутри выпуклого четырехугольника A1A2B2B1 нашлась такая точка C, что треугольники CA1A2 и CB2B1 – правильные. Точки C1 и C2 симметричны точке C относительно прямых A2B2 и A1B1 соответственно. Докажите, что треугольники A1B1C1 и A2B2C2 подобны.
|
|
|
Сложность: 4- Классы: 9,10,11
|
Уравнение с целыми коэффициентами x4 + ax³ + bx² + cx + d = 0 имеет четыре положительных корня с учетом кратности.
Найдите наименьшее возможное значение коэффициента b при этих условиях.
|
|
|
Сложность: 4- Классы: 10,11
|
Имеются чашечные весы, которые находятся в равновесии, если разность масс на их чашах не превосходит 1 г, а также гири массами ln 3, ln 4, ..., ln 79 г.
Можно ли разложить все эти гири на чаши весов так, чтобы весы находились в равновесии?
|
|
|
Сложность: 4- Классы: 8,9,10
|
Все натуральные числа, бóльшие единицы, раскрасили в два цвета – синий и красный – так, что сумма каждых двух синих (в том числе одинаковых) – синяя, а произведение каждых двух красных (в том числе одинаковых) – красное. Известно, что при раскрашивании были использованы оба цвета и что число 1024 покрасили в синий цвет. Какого цвета при этом могло оказаться число 2017?
Страница:
<< 201 202 203 204
205 206 207 >> [Всего задач: 1984]