Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Дан остроугольный треугольник ABC. На сторонах AB и BC во внешнюю сторону построены равные прямоугольники ABMN и LBCK так, что  AB = KC.
Докажите, что прямые AL, NK и MC пересекаются в одной точке.

Вниз   Решение


Даны многочлен P(x) и такие числа  a1, a2, a3, b1, b2, b3,  что  a1a2a3 ≠ 0.  Оказалось, что  P(a1x + b1) + P(a2x + b2) = P(a3x + b3)  для любого действительного x. Докажите, что P(x) имеет хотя бы один действительный корень.

ВверхВниз   Решение


Клетчатая плоскость раскрашена в шахматном порядке в чёрный и белый цвета. Затем белые клетки снова раскрашены в красный и синий цвета так, чтобы клетки, соседние по углу, были разноцветными. Пусть l – прямая, не параллельная сторонам клеток. Для каждого отрезка I, параллельного l, посчитаем разность сумм длин его красных и синих участков. Докажите, что существует число C (зависящее только от прямой l) такое, что все полученные разности не превосходят C.

ВверхВниз   Решение


Автор: Сухов К.

Два игрока по очереди проводят диагонали в правильном (2n+1)-угольнике  (n > 1).  Разрешается проводить диагональ, если она пересекается (по внутренним точкам) с чётным числом ранее проведённых диагоналей (и не была проведена раньше). Проигрывает игрок, который не может сделать очередной ход. Кто выиграет при правильной игре?

ВверхВниз   Решение


В кинотеатре семь рядов по 10 мест каждый. Группа из 50 детей сходила на утренний сеанс, а потом на вечерний.
Докажите, что найдутся двое детей, которые на утреннем сеансе сидели в одном ряду и на вечернем тоже сидели в одном ряду.

ВверхВниз   Решение


Покажите, как разрезать фигуру, изображенную на верхнем рисунке, на три равные части и сложить из этих частей правильный шестиугольник, изображенный на нижнем рисунке. Оставлять дырки и накладывать части друг на друга нельзя.




ВверхВниз   Решение


Аудитория имеет форму правильного шестиугольника со стороной 3 м. В каждом углу установлен храпометр, определяющий число спящих студентов на расстоянии, не превышающем 3 м. Сколько всего спящих студентов в аудитории, если сумма показаний храпометров равна 7?

ВверхВниз   Решение


Автор: Саблин А.

Офеня купил на оптовом рынке партию ручек и предлагает покупателям либо одну ручку за 5 рублей, либо три ручки за 10 рублей. От каждого покупателя Офеня получает одинаковую прибыль. Какова оптовая цена ручки?

Вверх   Решение

Задачи

Страница: << 204 205 206 207 208 209 210 >> [Всего задач: 1957]      



Задача 77900

Темы:   [ Геометрия на клетчатой бумаге ]
[ Шахматные доски и шахматные фигуры ]
[ Наибольшая или наименьшая длина ]
[ Перебор случаев ]
Сложность: 4-
Классы: 8,9

Имеется шахматная доска с обычной раскраской (границы квадратов считаются окрашенными в чёрный цвет).
Начертить на ней окружность наибольшего радиуса, целиком лежащую на чёрном.

Прислать комментарий     Решение

Задача 77943

Темы:   [ Задачи на движение ]
[ Малые шевеления ]
Сложность: 4-
Классы: 9

Два человека A и B должны попасть как можно скорее из пункта M в пункт N, расположенный в 15 км от M. Пешком они могут передвигаться со скоростью 6 км/ч. Кроме того, в их распоряжении есть велосипед, на котором можно ехать со скоростью 15 км/ч. A отправляется в путь пешком, а B едет на велосипеде до встречи с пешеходом C, идущим из N и M. Дальше B идёт пешком, а C едет на велосипеде до встречи с A и передаёт ему велосипед, на котором тот и приезжает в N. Когда должен выйти из N пешеход C, чтобы время, затраченное A и B на дорогу в N, было наименьшим? (C идёт пешком с той же скоростью, что A и B; время, затраченное на дорогу, считается от момента выхода A и B из M до момента прибытия последнего из них в N.)
Прислать комментарий     Решение


Задача 77958

Темы:   [ Две касательные, проведенные из одной точки ]
[ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Вспомогательная окружность ]
Сложность: 4-
Классы: 9

Из точки C проведены касательные CA и CB к окружности O. Из произвольной точки N окружности опущены перпендикуляры ND, NE, NF соответственно на прямые A, CA и CB. Докажите, что ND есть среднее геометрическое чисел NE и NF.

Прислать комментарий     Решение

Задача 77981

Темы:   [ Свойства частей, полученных при разрезаниях ]
[ Подсчет двумя способами ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4-
Классы: 8,9

Тысяча точек является вершинами выпуклого тысячеугольника, внутри которого расположено ещё пятьсот точек так, что никакие три из пятисот не лежат на одной прямой. Данный тысячеугольник разрезан на треугольники таким образом, что все указанные 1500 точек являются вершинами треугольников и эти треугольники не имеют никаких других вершин. Сколько получится треугольников при таком разрезании?
Прислать комментарий     Решение


Задача 77984

Тема:   [ Признаки делимости (прочее) ]
Сложность: 4-
Классы: 9,10

1953 цифры выписаны по кругу. Известно, что если читать эти цифры по часовой стрелке, начиная с некоторого определённого места, то полученное 1953-значное число делится на 27. Докажите, что если начать читать по часовой стрелке с любого другого места, то полученное число также будет делиться на 27.

Прислать комментарий     Решение

Страница: << 204 205 206 207 208 209 210 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .