ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 184 185 186 187 188 189 190 >> [Всего задач: 1957]      



Задача 67312

Темы:   [ Теория графов (прочее) ]
[ Оценка + пример ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Метелев Д.

В клуб любителей гиперграфов в начале года записались $n$ попарно незнакомых школьников. За год клуб провёл $100$ заседаний, причём каждое заседание посетил хотя бы один школьник. Два школьника знакомились, если было хотя бы одно заседание, которое они оба посетили. В конце года оказалось, что количество знакомых у каждого школьника не меньше, чем количество заседаний, которые он посетил. Найдите минимальное значение $n$, при котором такое могло случиться.
Прислать комментарий     Решение


Задача 78203

Темы:   [ Концентрические окружности ]
[ Поворот (прочее) ]
Сложность: 3+
Классы: 10,11

Два концентрических круга поделены на 2k равных секторов. Каждый сектор выкрашен в белый или чёрный цвет. Доказать, что если белых и чёрных секторов на каждом круге одинаковое количество, то можно сделать такой поворот, что по крайней мере на половине длины окружности будут соприкасаться разноцветные куски.
Прислать комментарий     Решение


Задача 79248

Темы:   [ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Наглядная геометрия в пространстве ]
Сложность: 3+
Классы: 9,10,11

Доказать, что у всякого выпуклого многогранника найдутся две грани с одинаковым числом сторон.
Прислать комментарий     Решение


Задача 79354

Темы:   [ Свойства суммы, разности векторов и произведения вектора на число ]
[ Принцип крайнего (прочее) ]
[ Вспомогательные проекции ]
Сложность: 3+
Классы: 10

Существует ли на плоскости конечный набор различных векторов $ \overrightarrow{a_1}$, $ \overrightarrow{a_2}$, ..., $ \overrightarrow{a_n}$ такой, что для любой пары различных векторов из этого набора найдётся такая другая пара из этого набора, что суммы каждой из пар равны между собой?
Прислать комментарий     Решение


Задача 107799

Темы:   [ Геометрия на клетчатой бумаге ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ ГМТ с ненулевой площадью ]
Сложность: 3+
Классы: 8,9,10

В узлах клетчатой бумаги живут садовники, а вокруг них повсюду растут цветы. За каждым цветком должны ухаживать 3 ближайших к нему садовника. Один из садовников хочет узнать, за каким участком он должен ухаживать. Нарисуйте этот участок.
Прислать комментарий     Решение


Страница: << 184 185 186 187 188 189 190 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .