Страница:
<< 223 224 225 226
227 228 229 >> [Всего задач: 1957]
В выпуклом четырёхугольнике две стороны равны 1, а другие стороны и обе
диагонали не больше 1. Какое максимальное значение может принимать периметр
четырёхугольника?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Найти все такие натуральные n, для которых числа 1/n и 1/n+1 выражаются конечными десятичными дробями.
|
|
Сложность: 4- Классы: 8,9,10
|
Доказать, что 11983 + 21983 + ... + 19831983 делится на 1 + ... + 1983.
|
|
Сложность: 4- Классы: 8,9,10
|
За круглым столом сидят 13 богатырей из k городов, где 1 < k < 13. Каждый богатырь держит в руке золотой или серебряный кубок, причём золотых кубков тоже k. Князь повелел каждому богатырю передать свой кубок соседу справа и повторять это до тех пор, пока какие-нибудь два богатыря из одного города оба не получат золотые кубки. Доказать, что желание князя всегда будет исполнено.
За дядькой Черномором выстроилось чередой бесконечное число богатырей. Доказать,
что он может приказать части из них выйти из строя так, чтобы в строю осталось
бесконечно много богатырей и все они стояли по росту (не обязательно в порядке
убывания роста).
Страница:
<< 223 224 225 226
227 228 229 >> [Всего задач: 1957]