ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Сторона основания правильной треугольной пирамиды равна a , боковая грань образует с плоскостью основания угол 60o . Найдите объём пирамиды. Найти двузначное число, которое равно сумме куба числа его десятков и квадрата числа его единиц. Найти все действительные решения системы уравнений
Стороны треугольника a,b и c . Сторона основания правильной треугольной пирамиды равна a , боковая грань образует с плоскостью основания угол 60o . Найдите высоту пирамиды. Царь выделял на содержание писарского приказа 1000 рублей в год (все писари получали поровну). Царю посоветовали сократить численность писарей на 50%, а оставшимся писарям повысить жалование на 50%. На сколько изменятся при этом затраты царя на писарский приказ? На доске в лаборатории написаны два числа. Каждый день старший научный сотрудник Петя стирает с доски оба числа и пишет вместо них их среднее арифметическое и среднее гармоническое. Утром первого дня на доске были написаны числа 1 и 2. Найдите произведение чисел, записанных на доске вечером 1999-го дня. |
Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 1957]
Петин счет в банке содержит 500 долларов. Банк разрешает совершать операции только двух видов: снимать 300 долларов или добавлять 198 долларов.
На доске в лаборатории написаны два числа. Каждый день старший научный сотрудник Петя стирает с доски оба числа и пишет вместо них их среднее арифметическое и среднее гармоническое. Утром первого дня на доске были написаны числа 1 и 2. Найдите произведение чисел, записанных на доске вечером 1999-го дня.
a, b, c – стороны треугольника. Докажите неравенство
Длины оснований трапеции равны m см и n см (m и n – натуральные числа, m ≠ n). Докажите, что трапецию можно разрезать на равные треугольники.
Решите уравнение (x + 1)63 + (x + 1)62(x – 1) + (x + 1)61(x – 1)² + ... + (x – 1)63 = 0.
Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 1957]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке