ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Треугольник ABC вписан в
окружность с центром в O . X "– произвольная точка внутри
треугольника ABC , такая, что |
Страница: << 194 195 196 197 198 199 200 >> [Всего задач: 1957]
Дорога протяженностью 1 км полностью освещена фонарями, причем каждый фонарь освещает отрезок дороги длиной 1 м. Какое наибольшее количество фонарей может быть на дороге, если известно, что после выключения любого фонаря дорога будет освещена уже не полностью?
Про непрерывную функцию f известно, что:
Следует ли отсюда, что график f — прямая?
В прямоугольном треугольнике ABC точка O – середина гипотенузы AC . На отрезке AB взята точка M , а на отрезке BC – точка N , причём угол MON – прямой. Докажите, что AM2+CN2 = MN2 .
Треугольник ABC вписан в
окружность с центром в O . X "– произвольная точка внутри
треугольника ABC , такая, что
Поставьте на плоскости 9 точек так, чтобы никакие 4 не лежали на одной прямой, но из любых шести нашлись 3, лежащие на одной прямой. (На рисунке проведите все прямые, на которых лежат по три отмеченные точки.)
Страница: << 194 195 196 197 198 199 200 >> [Всего задач: 1957]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке