Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Из вершины A острого угла ромба ABCD опущены перпендикуляры AM и AN на продолжения сторон BC и CD. В четырёхугольник AMCN вписана окружность радиуса 1. Найдите сторону ромба, если $ \angle$BAC = 2arctg$ {\frac{1}{2}}$.

Вниз   Решение


Поставьте на плоскости 9 точек так, чтобы никакие 4 не лежали на одной прямой, но из любых шести нашлись 3, лежащие на одной прямой. (На рисунке проведите все прямые, на которых лежат по три отмеченные точки.)

ВверхВниз   Решение


Может ли произведение двух последовательных натуральных чисел равняться произведению двух последовательных чётных чисел?

ВверхВниз   Решение


Какое наибольшее число пятниц может быть в году?

ВверхВниз   Решение


К окружности радиуса 36 проведена касательная из точки, удаленной от центра на расстояние, равное 85. Найдите длину касательной.

ВверхВниз   Решение


Автор: Фольклор

В треугольнике ABC со сторонами  AB = 4,  AC = 6  проведена биссектриса угла A. На эту биссектрису опущен перпендикуляр BH.
Найдите MH, где M – середина BC.

ВверхВниз   Решение


Существует ли такой невыпуклый многогранник, что из некоторой точки М, лежащей вне него, не видна ни одна из его вершин?
(Многогранник сделан из непрозрачного материала, так что сквозь него ничего не видно.)

 

ВверхВниз   Решение


Может ли случиться, что шесть попарно непересекающихся параллелепипедов расположены в пространстве так, что из некоторой им не принадлежащей точки пространства не видно ни одной из их вершин? (Параллелепипеды непрозрачны.)

 

ВверхВниз   Решение


Найдите цифры a и b, для которых   = 0,bbbbb...

ВверхВниз   Решение


а) На сторонах BC, CA и AB треугольника ABC (или на их продолжениях) взяты точки A1, B1 и C1, отличные от вершин треугольника. Докажите, что описанные окружности треугольников  AB1C1, A1BC1 и A1B1C пересекаются в одной точке.
б) Точки A1, B1 и C1 перемещаются по прямым BC, CA и AB так, что все треугольники A1B1C1 подобны одному и тому же треугольнику. Докажите, что точка пересечения описанных окружностей треугольников  AB1C1, A1BC1 и A1B1C остается при этом неподвижной. (Треугольники предполагаются не только подобными, но и одинаково ориентированными.)

ВверхВниз   Решение


В треугольнике ABC проведены биссектрисы AA', BB', CC'. Известно, что в треугольнике A'B'C' эти прямые также являются биссектрисами.
Верно ли, что треугольник ABC равносторонний?

ВверхВниз   Решение


Из точки M проведены касательные MA и MB к окружности с центром O (A и B – точки касания). Найдите радиус окружности, если  ∠AMB = α  и  AB = a.

ВверхВниз   Решение


Окружности радиусов r и R  (R > r)  касаются внешним образом в точке K. К ним проведены две общие внешние касательные. Их точки касания с меньшей окружностью – A и D, с большей – B и C соответственно.
  а) Найдите AB и отрезок MN общей внутренней касательной, заключённый между внешними касательными.
  б) Докажите, что углы AKB и O1MO2 – прямые (O1 и O2 – центры окружностей).

ВверхВниз   Решение


Автор: Фольклор

В шестиугольнике пять углов по 90°, а один угол — 270° (см. рисунок). C помощью линейки без делений разделите его на два равновеликих многоугольника.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 116184  (#1)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
Сложность: 2+
Классы: 8,9

Автор: Фольклор

В шестиугольнике пять углов по 90°, а один угол — 270° (см. рисунок). C помощью линейки без делений разделите его на два равновеликих многоугольника.

Прислать комментарий     Решение

Задача 116185  (#2)

Темы:   [ Признаки и свойства параллелограмма ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Дан параллелограм ABCD. Прямая, параллельная AB, пересекает биссектрисы углов A и C в точках P и Q соответственно.
Докажите, что углы ADP и ABQ равны.

Прислать комментарий     Решение

Задача 116186  (#3)

Темы:   [ Векторы помогают решить задачу ]
[ Неравенства с векторами ]
[ Неравенство треугольника (прочее) ]
[ Параллелограммы (прочее) ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC на стороне AB выбраны точки K и L так, что AK = BL, а на стороне BC — точки M и N так, что CN = BM. Докажите, что KN + LMAC.

Прислать комментарий     Решение

Задача 116187  (#4)

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Радикальная ось ]
[ Вспомогательная окружность ]
[ Шестиугольники ]
Сложность: 3+
Классы: 8,9

Дан шестиугольник ABCDEF, в котором AB = BC, CD = DE, EF = FA, а углы A и C — прямые. Докажите, что прямые FD и BE перпендикулярны.

Прислать комментарий     Решение

Задача 116188  (#5)

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Окружность Аполлония ]
[ Подобные треугольники (прочее) ]
[ Замечательные точки и линии в треугольнике (прочее) ]
[ Изогональное сопряжение ]
Сложность: 4
Классы: 8,9

В окружность вписан треугольник ABC. Постройте такую точку P, что точки пересечения прямых AP, BP и CP с данной окружностью являются вершинами равностороннего треугольника.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .