Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Турниры:
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Из точки M на плоскость α опущен перпендикуляр MH длины и проведены две наклонные, составляющие с перпендикуляром углы по 60o . Угол между наклонными равен 120o . а) Найдите расстояние между основаниями A и B наклонных. б) На отрезке AB как на катете в плоскости α построен прямоугольный треугольник ABC (угол A – прямой). Найдите объём пирамиды MABC , зная, что cos BMC = - .

Вниз   Решение


В некоторой точке круглого острова радиусом 1 км зарыт клад. На берегу острова стоит математик с прибором, который указывает направление на клад, когда расстояние до клада не превосходит 500 м. Кроме того, у математика есть карта острова, на которой он может фиксировать все свои перемещения, выполнять измерения и геометрические построения. Математик утверждает, что у него есть алгоритм, как добраться до клада, пройдя меньше 4 км. Может ли это быть правдой?

ВверхВниз   Решение


На рисунке изображена фигура ABCD . Стороны AB , CD и AD этой фигуры– отрезки (причём AB||CD и AD CD ); BC – дуга окружности, причём любая касательная к этой дуге отсекает от фигуры трапецию или прямоугольник. Объясните, как провести касательную к дуге BC , чтобы отсекаемая фигура имела наибольшую площадь.

ВверхВниз   Решение


В параллелограмме ABCD, не являющемся ромбом, проведена биссектриса угла BAD. K и L – точки её пересечения с прямыми BC и CD соответственно. Докажите, что центр окружности, проведённой через точки C, K и L, лежит на окружности, проведённой через точки B, C и D.

ВверхВниз   Решение


В шести корзинах лежат груши, сливы и яблоки. Число слив в каждой корзине равно числу яблок в остальных корзинах вместе взятых, а число яблок в каждой корзине равно числу груш в остальных корзинах вместе взятых. Докажите, что общее число фруктов делится на 31.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1757]      



Задача 98024

Темы:   [ Уравнения в целых числах ]
[ Цепные (непрерывные) дроби ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 2
Классы: 7,8,9

Решить в натуральных числах уравнение:  

Прислать комментарий     Решение

Задача 116406

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 8,9

В шести корзинах лежат груши, сливы и яблоки. Число слив в каждой корзине равно числу яблок в остальных корзинах вместе взятых, а число яблок в каждой корзине равно числу груш в остальных корзинах вместе взятых. Докажите, что общее число фруктов делится на 31.

Прислать комментарий     Решение

Задача 97894

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
[ Признаки делимости (прочее) ]
Сложность: 2+
Классы: 7,8,9

Автор: Фомин С.В.

Натуральное число n записано в десятичной системе счисления. Известно, что если какая-то цифра входит в эту запись, то n делится нацело на эту цифру (0 в записи не встречается). Какое максимальное число различных цифр может содержать эта запись?

Прислать комментарий     Решение

Задача 97921

Темы:   [ Алгебраические неравенства (прочее) ]
[ Тождественные преобразования ]
[ Неравенство Коши ]
Сложность: 2+
Классы: 8,9

Автор: Фольклор

Докажите, что при любом a имеет место неравенство:   3(1 + a² + a4) ≥ (1 + a + a²)².

Прислать комментарий     Решение

Задача 97934

Темы:   [ Свойства коэффициентов многочлена ]
[ Целочисленные и целозначные многочлены ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 8,9,10

Автор: Фольклор

p(x) – многочлен с целыми коэффициентами. Известно, что для некоторых целых a и b выполняется равенство:  p(a) – p(b) = 1.
Докажите, что a и b различаются на 1.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1757]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .