ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Сумма углов n-угольника.
Докажите, что произвольный n-угольник (не обязательно выпуклый) можно разрезать на треугольники непересекающимися диагоналями.
Выведите отсюда, что сумма углов в произвольном n-угольнике
равна (n - 2) При каких n многочлен 1 + x² + x4 + ... + x2n–2 делится на 1 + x + x2 + ... + xn–1? Докажите, что для любого натурального n 25n+3 + 5n·3n+2 делится на 17. На сколько частей делят пространство n плоскостей "общего положения"? И что это за "общее положение"? Пусть m1(x), ..., mn(x) – попарно взаимно простые многочлены, a1(x), ..., an(x) – произвольные многочлены. Многочлен P(x) дает остаток 2 при делении на x – 1, и остаток 1 при делении на x – 2. Многоугольник имеет центр симметрии O. Докажите, что сумма расстояний
до вершин минимальна для точки O.
Из точки M описанной окружности треугольника ABC опущены
перпендикуляры MP и MQ на прямые AB и AC. При каком
положении точки M длина отрезка PQ максимальна?
Внутри выпуклого четырехугольника найдите точку, сумма расстояний
от которой до вершин была бы наименьшей.
Найдите необходимое и достаточное условие для того, чтобы выражение x³ + y³ + z³ + kxyz делилось на x + y + z. Докажите, что для любого натурального n число 32n+2 + 8n – 9 делится на 16. Найдите внутри треугольника ABC точку O, для которой сумма
квадратов расстояний от нее до сторон треугольника минимальна.
Внутри острого угла BAC дана точка M. Постройте на сторонах BA
и AC точки X и Y так, чтобы периметр треугольника XYM был
минимальным.
Докажите, что среди всех четырехугольников с фиксированными длинами
сторон наибольшую площадь имеет вписанный четырехугольник.
На одной стороне острого угла даны точки A и B. Постройте на
другой его стороне точку C, из которой отрезок AB виден под
наибольшим углом.
Докажите, что для любого натурального n 62n+1 + 1 делится на 7. Докажите, что многочлен P(x) = (x + 1)6 – x6 – 2x – 1 делится на x(x + 1)(2x + 1). Даны угол XAY и окружность внутри его. Постройте точку окружности,
сумма расстояний от которой до прямых AX и AY минимальна.
Площадь трапеции равна 1. Какую наименьшую величину может иметь
наибольшая диагональ этой трапеции?
Точки A1, B1 и C1 взяты на сторонах BC, CA и AB треугольника ABC, причём отрезки AA1, BB1 и CC1
пересекаются в одной точке M. Из точки M, лежащей внутри данного треугольника ABC, опущены
перпендикуляры MA1, MB1, MC1 на прямые BC, CA, AB. Для каких точек M внутри данного треугольника ABC величина Докажите, что 11n+2 + 122n+1 делится на 133 при любом натуральном n. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]
Докажите, что 11n+2 + 122n+1 делится на 133 при любом натуральном n.
Докажите, что для любого натурального n 25n+3 + 5n·3n+2 делится на 17.
Доказать, что n³ + 5n делится на 6 при любом целом n.
Докажите, что для любого натурального n 62n+1 + 1 делится на 7.
Докажите, что для любого натурального n число 32n+2 + 8n – 9 делится на 16.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке