Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Найдите периметр треугольника ABC, если известны координаты его вершин  A(–3, 5),  B(3, –3)  и точки  M(6, 1),  являющейся серединой стороны BC.

Вниз   Решение


Найдите периметр треугольника KLM, если известны координаты его вершин  K(–4, –3),  L(2, 5)  и точки  P(5, 1),  являющейся серединой стороны LM.

ВверхВниз   Решение


Миша загадал число не меньше 1 и не больше 1000. Васе разрешено задавать только такие вопросы, на которые Миша может ответить «да» или «нет» (Миша всегда говорит правду). Может ли Вася за 10 вопросов определить загаданное число?

ВверхВниз   Решение


На отрезке  [0, N]  отмечены его концы и еще две точки так, что длины отрезков, на которые разбился отрезок  [0, N],  целые и взаимно просты в совокупности. Если нашлись такие две отмеченные точки A и B, что расстояние между ними кратно 3, то можно разделить отрезок AB на три равных части, отметить одну из точек деления и стереть одну из точек A, B. Верно ли, что за несколько таких действий можно отметить любую наперед заданную целую точку отрезка  [0, N]?

ВверхВниз   Решение


Можно ли в клетках таблицы 2002×2002 расставить натуральные числа от 1 до 2002² так, чтобы для каждой клетки этой таблицы из строки или из столбца, содержащих эту клетку, можно было бы выбрать тройку чисел, одно из которых равно произведению двух других?

ВверхВниз   Решение


Автор: Лифшиц Ю.

На плоскости отмечено 6 красных, 6 синих и 6 зеленых точек, причем никакие три из отмеченных точек не лежат на одной прямой. Докажите, что сумма площадей треугольников с вершинами одного цвета составляет не более четверти суммы площадей всех треугольников с отмеченными вершинами.

ВверхВниз   Решение


Дан выпуклый четырёхугольник ABCD , и проведены биссектрисы lA , lB , lC , lD внешних углов этого четырёхугольника. Прямые lA и lB пересекаются в точке K , прямые lB и lC – в точке L , прямые lC и lD – в точке M , прямые lD и lA – в точке N . Докажите, что если окружности, описанные около треугольников ABK и CDM , касаются внешним образом, то и окружности, описанные около треугольников BCL и DAN , касаются внешним образом.

ВверхВниз   Решение


На одной стороне угла с вершиной O взята точка A, а на другой – точки B и C, причём точка B лежит между O и C. Проведена окружность с центром O1, вписанная в треугольник OAB, и окружность с центром O2, касающаяся стороны AC и продолжений сторон OA и OC треугольника AOC. Докажите, что если  O1A = O2A,  то треугольник ABC равнобедренный.

ВверхВниз   Решение


В угол вписаны две окружности; одна из них касается сторон угла в точках K1 и K2, а другая — в точках L1 и L2. Докажите, что прямая K1L2 высекает на этих двух окружностях равные хорды.

Вверх   Решение

Задачи

Страница: << 185 186 187 188 189 190 191 >> [Всего задач: 1957]      



Задача 35621

Темы:   [ Вычисление интегралов ]
[ Тождественные преобразования (тригонометрия) ]
[ Симметрия и инволютивные преобразования ]
Сложность: 4-
Классы: 11

Вычислите $\int_0^{\pi /2}(\sin ^2 (\sin x)+ \cos^2(\cos x)) dx$.
Прислать комментарий     Решение


Задача 53132

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Общая касательная к двум окружностям ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4-
Классы: 8,9

В угол вписаны две окружности; одна из них касается сторон угла в точках K1 и K2, а другая — в точках L1 и L2. Докажите, что прямая K1L2 высекает на этих двух окружностях равные хорды.

Прислать комментарий     Решение


Задача 76431

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 8,9

Найти сумму

13 + 33 + 53 + ... + (2n - 1)3.

Прислать комментарий     Решение

Задача 77881

Темы:   [ Свойства симметрий и осей симметрии ]
[ Основные свойства центра масс ]
Сложность: 4-
Классы: 8,9,10

Доказать, что если многоугольник имеет несколько осей симметрии, то все они пересекаются в одной точке.
Прислать комментарий     Решение


Задача 77893

Темы:   [ Шестиугольники ]
[ Теорема о группировке масс ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4-
Классы: 8,9

В произвольном (выпуклом — прим. ред.) шестиугольнике соединены через одну середины сторон. Докажите, что точки пересечения медиан двух образовавшихся треугольников совпадают.
Прислать комментарий     Решение


Страница: << 185 186 187 188 189 190 191 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .