Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Радиусы двух окружностей равны R и r, а расстояние между их центрами равно d. Докажите, что эти окружности пересекаются тогда и только тогда, когда  | R - r| < d < R + r.

Вниз   Решение


Докажите, что  SABCD $ \leq$ (AB . BC + AD . DC)/2.

ВверхВниз   Решение


Две окружности S1 и S2 с центрами O1 и O2 касаются в точке A. Через точку A проведена прямая, пересекающая S1 в точке A1 и S2 в точке A2. Докажите, что  O1A1 || O2A2.

ВверхВниз   Решение


На отрезке длиной 1 дано n точек. Докажите, что сумма расстояний от некоторой точки отрезка до этих точек не меньше n/2.

ВверхВниз   Решение


Остроугольный треугольник расположен внутри окружности. Докажите, что ее радиус не меньше радиуса описанной окружности треугольника.
Верно ли это утверждение для тупоугольного треугольника?

ВверхВниз   Решение


В лесу растут деревья цилиндрической формы. Связисту нужно протянуть провод из точки A в точку B, расстояние между которыми равно l. Докажите, что для этой цели ему достаточно куска провода длиной 1, 6l.

ВверхВниз   Решение


Докажите тождество: 1 . 2 . 3 + 2 . 3 . 4 +...+ n(n + 1)(n + 2) = $\displaystyle {\textstyle\frac{1}{4}}$n(n + 1)(n + 2)(n + 3).

ВверхВниз   Решение


В выпуклом четырехугольнике ABCD равны стороны AB и CD и углы A и C. Обязательно ли этот четырехугольник параллелограмм?

ВверхВниз   Решение


На доске написаны 10 единиц и 10 двоек. За ход разрешается стереть две любые цифры и, если они были одинаковыми, написать двойку, а если разными – единицу. Если последняя оставшаяся на доске цифра – единица, то выиграл первый игрок, если двойка – то второй.

ВверхВниз   Решение


а) Диагонали AC и BE правильного пятиугольника ABCDE пересекаются в точке K. Докажите, что описанная окружность треугольника CKE касается прямой BC.
б) Пусть a — длина стороны правильного пятиугольника, d — длина его диагонали. Докажите, что  d2 = a2 + ad.

ВверхВниз   Решение


Имеется три кучки камней: в первой – 10, во второй – 15, в третьей – 20. За ход разрешается разбить любую кучку на две меньшие. Проигрывает тот, кто не сможет сделать ход. Кто выиграет?

ВверхВниз   Решение


Докажите, что правильный треугольник можно разрезать на n правильных треугольников для любого n, начиная с шести.

ВверхВниз   Решение


Докажите, что биссектрисы углов выпуклого четырехугольника образуют вписанный четырехугольник.

ВверхВниз   Решение


Докажите, что  SABC $ \leq$ AB . BC/2.

ВверхВниз   Решение


Окружности S1 и S2 касаются окружности S внутренним образом в точках A и B, причем одна из точек пересечения окружностей S1 и S2 лежит на отрезке AB. Докажите, что сумма радиусов окружностей S1 и S2 равна радиусу окружности S.

ВверхВниз   Решение


На плоскости даны четыре точки, не лежащие на одной прямой. Докажите, что хотя бы один из треугольников с вершинами в этих точках не является остроугольным.

ВверхВниз   Решение


Бумажный треугольник, один из углов которого равен α, разрезали на несколько треугольников. Могло ли случиться, что все углы всех полученных треугольников меньше α
  а) в случае, если  α = 70°;
  б) в случае, если  α = 80°?

ВверхВниз   Решение


В четырехугольнике ABCD стороны AB и CD равны, причем лучи AB и DC пересекаются в точке O. Докажите, что прямая, соединяющая середины диагоналей, перпендикулярна биссектрисе угла AOD.

ВверхВниз   Решение


Список упорядоченных в порядке возрастания длин сторон и диагоналей одного выпуклого четырехугольника совпадает с таким же списком для другого четырехугольника. Обязательно ли эти четырехугольники равны?

ВверхВниз   Решение


Автор: Фомин С.В.

На плоскости дано конечное множество многоугольников, каждые два из которых имеют общую точку. Докажите, что существует прямая, которая имеет общую точку с каждым из этих многоугольников.

ВверхВниз   Решение


Окружности S1 и S2 пересекаются в точке A. Через точку A проведена прямая, пересекающая S1 в точке BS2 в точке C. В точках C и B проведены касательные к окружностям, пересекающиеся в точке D. Докажите, что угол BDC не зависит от выбора прямой, проходящей через A.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 56562

Тема:   [ Угол между касательной и хордой ]
Сложность: 2
Классы: 8

Две окружности пересекаются в точках P и Q. Через точку A первой окружности проведены прямые AP и AQ, пересекающие вторую окружность в точках B и C. Докажите, что касательная в точке A к первой окружности параллельна прямой BC.
Прислать комментарий     Решение


Задача 56564

Тема:   [ Угол между касательной и хордой ]
Сложность: 3
Классы: 8

Окружности S1 и S2 пересекаются в точках A и B. Через точку A проведена касательная AQ к окружности S1 (точка Q лежит на S2), а через точку B -- касательная BS к окружности S2 (точка S лежит на S1). Прямые BQ и AS пересекают окружности S1 и S2 в точках R и P. Докажите, что PQRS — параллелограмм.
Прислать комментарий     Решение


Задача 56565

Тема:   [ Угол между касательной и хордой ]
Сложность: 3
Классы: 8

Касательная в точке A к описанной окружности треугольника ABC пересекает прямую BC в точке EAD — биссектриса треугольника ABC. Докажите, что AE = ED.
Прислать комментарий     Решение


Задача 56566

Тема:   [ Угол между касательной и хордой ]
Сложность: 3
Классы: 8

Окружности S1 и S2 пересекаются в точке A. Через точку A проведена прямая, пересекающая S1 в точке BS2 в точке C. В точках C и B проведены касательные к окружностям, пересекающиеся в точке D. Докажите, что угол BDC не зависит от выбора прямой, проходящей через A.
Прислать комментарий     Решение


Задача 56567

Тема:   [ Угол между касательной и хордой ]
Сложность: 3
Классы: 8

Две окружности пересекаются в точках A и B. Из точки A к этим окружностям проведены касательные AM и AN (M и N — точки окружностей). Докажите, что:
а)  $ \angle$ABN + $ \angle$MAN = 180o;
б)  BM/BN = (AM/AN)2.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .