ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

а) Из класса, в котором учатся 30 человек, нужно выбрать двоих школьников для участия в математической олимпиаде. Сколькими способами это можно сделать?
б) Сколькими способами можно выбрать команду из трех школьников в том же классе?

Вниз   Решение


Отрезки AB и CD пересекаются под прямым углом и  AC = AD.  Докажите, что  BC = BD  и  ∠ACB = ∠ADB.

ВверхВниз   Решение


Докажите, что для любого натурального n  10n + 18n – 1  делится на 27.

ВверхВниз   Решение


Числа от 51 до 150 расставлены в таблицу 10×10. Может ли случиться, что для каждой пары чисел a, b, стоящих в соседних по стороне клетках, хотя бы одно из уравнений  x² – ax + b = 0  и  x² – bx + a = 0  имеет два целых корня?

ВверхВниз   Решение


Автор: Вим Пайлс

На плоскости даны два отрезка A1B1 и A2B2, причём  A2B2/A1B1 = k < 1.  На отрезке A1A2 взята точка A3, а на продолжении этого отрезка за точку А2 – точка А4 так, что  A3А2/А3А1 = А4А2/А4А1 = k.  Аналогично на отрезке В1В2 берётся точка В3, а на продолжении этого отрезка за точку В2 – точка В4 так, что
В3В2/В3В1 = В4В2/В4В1 = k.  Найти угол между прямыми А3В3 и А4В4.

ВверхВниз   Решение


Отрезки AB и CD пересекаются. Докажите, что если отрезки AC, CB, BD и AD равны, то луч AB является биссектрисой угла CAD, луч CD – биссектрисой угла ACB, а CD перпендикулярно AB.

ВверхВниз   Решение


Доска размером 2005×2005 разделена на квадратные клетки со стороной единица. Некоторые клетки доски в каком-то порядке занумерованы числами 1, 2, ... так, что на расстоянии, меньшем 10, от любой незанумерованной клетки найдется занумерованная клетка. Докажите, что найдутся две клетки на расстоянии, меньшем 150, которые занумерованы числами, различающимися более, чем на 23. (Расстояние между клетками – это расстояние между их центрами.)

ВверхВниз   Решение


Пусть Oa, Ob и Oc — центры описанных окружностей треугольников PBC, PCA и PAB. Докажите, что если точки Oa и Ob лежат на прямых PA и PB, то точка Oc лежит на прямой PC.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 86]      



Задача 56693  (#03.036)

Тема:   [ Применение теоремы о высотах треугольника ]
Сложность: 5
Классы: 8,9

Даны диаметр AB окружности и точка C, не лежащая на прямой AB. С помощью одной линейки (без циркуля) опустите перпендикуляр из точки C на AB, если: а) точка C не лежит на окружности; б) точка C лежит на окружности.
Прислать комментарий     Решение


Задача 56694  (#03.037)

Тема:   [ Применение теоремы о высотах треугольника ]
Сложность: 5
Классы: 8,9

Пусть Oa, Ob и Oc — центры описанных окружностей треугольников PBC, PCA и PAB. Докажите, что если точки Oa и Ob лежат на прямых PA и PB, то точка Oc лежит на прямой PC.
Прислать комментарий     Решение


Задача 54505  (#03.038)

 [Луночки Гиппократа]
Темы:   [ Площадь круга, сектора и сегмента ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

На гипотенузе и катетах прямоугольного треугольника как на диаметрах построены полуокружности так, как показано на рисунке. Докажите, что сумма площадей заштрихованных "луночек" равна площади треугольника.

Прислать комментарий     Решение


Задача 56696  (#03.039)

Тема:   [ Площади криволинейных фигур ]
Сложность: 5
Классы: 9

В круге проведены два перпендикулярных диаметра, т. е. четыре радиуса, а затем построены четыре круга, диаметрами которых служат эти радиусы. Докажите, что суммарная площадь попарно общих частей этих кругов равна площади части исходного круга, лежащей вне рассматриваемых четырех кругов (рис.).


Прислать комментарий     Решение

Задача 56697  (#03.040)

Тема:   [ Площади криволинейных фигур ]
Сложность: 5
Классы: 9

На трех отрезках OA, OB и OC одинаковой длины (точка B лежит внутри угла AOC) как на диаметрах построены окружности. Докажите, что площадь криволинейного треугольника, ограниченного дугами этих окружностей и не содержащего точку O, равна половине площади (обычного) треугольника ABC.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 86]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .