Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Четырёхугольник ABCD вписан в окружность Ω с центром O, причём O не лежит на диагоналях четырёхугольника. Описанная окружность Ω1 треугольника AOC проходит через середину диагонали BD. Докажите, что описанная окружность Ω2 треугольника BOD проходит через середину диагонали AC.

Вниз   Решение


В ряд стоят $9$ вертикальных столбиков. В некоторых местах между соседними столбиками вставлены горизонтальные палочки, никакие две из которых не находятся на одной высоте. Жук ползёт снизу вверх; когда он встречает палочку, он переползает по ней на соседний столбик и продолжает ползти вверх. Известно, что если жук начинает внизу первого столбика, то он закончит свой путь на девятом столбике. Всегда ли можно убрать одну из палочек так, чтобы жук в конце пути оказался наверху пятого столбика?

Например, если палочки расположены как на рисунке, то жук будет ползти по сплошной линии. Если убрать третью палочку на пути жука, то он поползёт по пунктирной линии.

ВверхВниз   Решение


Однажды барон Мюнхгаузен, вернувшись с прогулки, рассказал, что половину пути он шёл со скоростью 5 км/ч, а половину времени, затраченного на прогулку, – со скоростью 6 км/ч. Не ошибся ли барон?

ВверхВниз   Решение


Дано уравнение  xn – a1xn–1a2xn–2 – ... – an–1x – an = 0,  где  a1 ≥ 0,  a2 ≥ 0,  an ≥ 0.
Доказать, что это уравнение не может иметь двух положительных корней.

ВверхВниз   Решение


а) Докажите, что расстояния от любой точки параболы до фокуса и до директрисы равны.
б) Докажите, что множество точек, для которых расстояния до некоторой фиксированной точки и до некоторой фиксированной прямой равны, является параболой.

ВверхВниз   Решение


Пусть f(x) – многочлен степени n с корнями α1, ..., αn. Определим многоугольник M как выпуклую оболочку точек α1, ..., αn на комплексной плоскости. Докажите, что корни производной этого многочлена лежат внутри многоугольника M.

ВверхВниз   Решение


При каких p и q двучлен  x4 + 1  делится на  x² + px + q?

ВверхВниз   Решение


На плоскости дано  n > 4  точек, никакие три из которых не лежат на одной прямой.
Докажите, что существует не менее    различных выпуклых четырёхугольников с вершинами в этих точках.

ВверхВниз   Решение


В поход пошли 20 туристов. Самому старшему из них 35 лет, а самому младшему 20 лет. Верно ли, что среди туристов есть одногодки?

ВверхВниз   Решение


Автор: Пешнин А.

Учительница продиктовала Вовочке угловые коэффициенты и свободные члены трёх разных линейных функций, графики которых параллельны. Невнимательный Вовочка при записи каждой из функций поменял местами угловой коэффициент и свободный член и построил графики получившихся функций. Сколько могло получиться точек, через которые проходят хотя бы два графика?

ВверхВниз   Решение


В треугольнике ABC точка E — середина стороны BC, точка D лежит на стороне AC, AC = 1, $ \angle$BAC = 60o, $ \angle$ABC = 100o, $ \angle$ACB = 20o и  $ \angle$DEC = 80o (рис.). Чему равна сумма площади треугольника ABC и удвоенной площади треугольника CDE?


Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 69]      



Задача 56761  (#04.011)

Тема:   [ Площадь треугольника. ]
Сложность: 5
Классы: 9

В треугольнике ABC точка E — середина стороны BC, точка D лежит на стороне AC, AC = 1, $ \angle$BAC = 60o, $ \angle$ABC = 100o, $ \angle$ACB = 20o и  $ \angle$DEC = 80o (рис.). Чему равна сумма площади треугольника ABC и удвоенной площади треугольника CDE?


Прислать комментарий     Решение

Задача 56762  (#04.012)

Тема:   [ Площадь треугольника. ]
Сложность: 5
Классы: 9

В треугольник  Ta = $ \triangle$A1A2A3 вписан треугольник  Tb = $ \triangle$B1B2B3, а в треугольник Tb вписан треугольник  Tc = $ \triangle$C1C2C3, причем стороны треугольников Ta и Tc параллельны. Выразите площадь треугольника Tb через площади треугольников Ta и Tc.
Прислать комментарий     Решение


Задача 56763  (#04.013)

Тема:   [ Площадь треугольника. ]
Сложность: 5
Классы: 9

На сторонах треугольника ABC взяты точки A1, B1 и C1, делящие его стороны в отношениях  BA1 : A1C = p, CB1 : B1A = q и  AC1 : C1B = r. Точки пересечения отрезков AA1, BB1 и CC1 расположены так, как показано на рис. Найдите отношение площадей треугольников PQR и ABC.


Прислать комментарий     Решение

Задача 56764  (#04.014)

Тема:   [ Площадь четырехугольника ]
Сложность: 2
Классы: 9

Диагонали четырехугольника ABCD пересекаются в точке O. Докажите, что  SAOB = SCOD тогда и только тогда, когда  BC || AD.
Прислать комментарий     Решение


Задача 56765  (#04.015)

Тема:   [ Площадь четырехугольника ]
Сложность: 3
Классы: 9

а) Диагонали выпуклого четырехугольника ABCD пересекаются в точке P. Известны площади треугольников ABP, BCP, CDP. Найдите площадь треугольника ADP.
б) Выпуклый четырехугольник разбит диагоналями на четыре треугольника, площади которых выражаются целыми числами. Докажите, что произведение этих чисел представляет собой точный квадрат.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .