Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 23 задачи
Версия для печати
Убрать все задачи

Точки A, B и C лежат на одной прямой (точка B расположена между точками A и C). Через точки A и B проводятся окружности, а через точку C — касательные к ним. Найдите геометрическое место точек касания.

Вниз   Решение


В стране несколько городов (больше одного); некоторые пары городов соединены дорогами. Известно, что из каждого города можно попасть в любой другой, проезжая по нескольким дорогам. Кроме того, дороги не образуют циклов, то есть если выйти из некоторого города по какой-то дороге и далее двигаться так, чтобы не проходить по одной дороге дважды, то невозможно возвратиться в начальный город. Докажите, что в этой стране найдутся хотя бы два города, каждый из которых соединен дорогой ровно с одним городом.

ВверхВниз   Решение


В секретной службе работают n агентов – 001, 002, ..., 007, ..., n. Первый агент следит за тем, кто следит за вторым, второй – за тем, кто следит за третьим, и т.д., n-й – за тем, кто следит за первым. Докажите, что n – нечётное число.

ВверхВниз   Решение


Докажите, что квадрат биссектрисы треугольника равен произведению сторон, её заключающих, без произведения отрезков третьей стороны, на которые она разделена биссектрисой.

ВверхВниз   Решение


На сфере радиуса 11 расположены точки A , A1 , B , B1 , C и C1 . Прямые AA1 , BB1 и CC1 попарно перпендикулярны и пересекаются в точке M , отстоящей от центра сферы на расстояние . Найдите AA1 , если известно, что BB1=18 , а точка M делит отрезок CC1 в отношении (8 + ):(8 - ) .

ВверхВниз   Решение


При каких значениях x и y верно равенство  x² + (1 – y)² + (x – y)² = ⅓?

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник, если на плоскости отмечены три точки: O — центр описанной окружности, P — точка пересечения медиан и H — основание одной из высот этого треугольника.

ВверхВниз   Решение


Во вписанно-описанном четырехугольнике отметили центры $O$, $I$ описанной и вписанной окружностей и середину $M$ одной из диагоналей, после чего сам четырехугольник стерли. Восстановите его.

ВверхВниз   Решение


На одной из сторон угла взяты две точки A и B. Найдите на другой стороне угла точку C такую, чтобы угол ACB был наибольшим. Постройте точку C с помощью циркуля и линейки.

ВверхВниз   Решение


Докажите, что если  Pn/Qn  (n ≥ 1)  – подходящая дробь к числу α, то имеет место по крайней мере одно из неравенств     или     Получите отсюда теорему Валена: для любого α найдётся бесконечно много таких дробей p/q, что  |α – p/q| < 1/2q2.

ВверхВниз   Решение


Углы AOB и COD совмещаются поворотом так, что луч OA совмещается с лучом OC, а луч OB – с OD. В них вписаны окружности, пересекающиеся в точках E и F. Доказать, что углы AOE и DOF равны.

ВверхВниз   Решение


Ася и Вася вырезают прямоугольники из клетчатой бумаги. Вася ленивый; он кидает игральную кость один раз и вырезает квадрат, сторона которого равна выпавшему числу очков. Ася кидает кость дважды и вырезает прямоугольник с длиной и шириной, равными выпавшим числам. У кого математическое ожидание площади прямоугольника больше?

ВверхВниз   Решение


Докажите, что корни уравнения
  а)  (x – a)(x – b) + (x – b)(x – c) + (x – a)(x – c) = 0;
  б)  c(x – a)(x – b) + a(x – b)(x – c) + b(x – a)(x – c) = 0
всегда вещественные.

ВверхВниз   Решение


В окружность вписан неправильный многоугольник. Если вершина A разбивает дугу, заключенную между двумя другими вершинами, на две неравные части, то такая вершина A называется неустойчивой. Каждую секунду какая-нибудь неустойчивая вершина перепрыгивает в середину своей дуги. В результате каждую секунду образуется новый многоугольник. Докажите, что сколько бы секунд ни прошло, многоугольник никогда не будет равным исходному.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник, если дана одна его вершина и три прямых, на которых лежат его биссектрисы.

ВверхВниз   Решение


Пусть a, b, c и a', b', c' — длины сторон треугольников ABC и A'B'C', S и S' — их площади. Докажите, что

a2(- a'2 + b'2 + c'2) + b2(a'2 - b'2 + c'2) + c2(a'2 + b'2 - c'2)$\displaystyle \ge$16SS',

причём равенство достигается тогда и только тогда, когда эти треугольники подобны (Пидо).

ВверхВниз   Решение


На каждой стороне прямоугольного треугольника построено по квадрату (пифагоровы штаны), и вся фигура вписана в круг. Для каких прямоугольных треугольников это можно сделать?

ВверхВниз   Решение


Геометрической интерпретацией итерационного процесса служит итерационная ломаная. Для ее построения на плоскости Oxy рисуется график функции f(x) и проводится биссектриса координатного угла — прямая y=x. Затем на графике функции отмечаются точки A0(x0,f(x0)), A1(x1,f(x1)),..., An(xn,f(xn)),... а на биссектрисе координатного угла — точки B0(x0,x0), B1(x1,x1),..., Bn(xn,xn),... Ломаная B0A0B1A1... BnAn... называется итерационной.
Постройте итерационные ломаные для следующих данных:
а) f (x) = 1 + $ {\dfrac{x}{2}}$,    x0 = 0, x0 = 8;
б) f (x) = $ {\dfrac{1}{x}}$,    x0 = 2;
в) f (x) = 2x - 1,    x0 = 0, x0 = 1, 125;
г) f (x) = - $ {\dfrac{3x}{2}}$ + 6,     x0 = $ {\dfrac{5}{2}}$;
д) f (x) = x2 + 3x - 3,    x0 = 1, x0 = 0, 99, x0 = 1, 01;
е) f (x) = $ \sqrt{1+x}$,    x0 = 0, x0 = 8;
ж) f (x) = $ {\dfrac{x^3}{3}}$ - $ {\dfrac{5x^2}{2}}$ + $ {\dfrac{25x}{6}}$ + 3,     x0 = 3.

ВверхВниз   Решение


Зафиксируем числа a0 и a1. Построим последовательность {an} в которой

an + 1 = $\displaystyle {\frac{a_n+a_{n-1}}{2}}$        (n $\displaystyle \geqslant$ 1).

Выразите an через a0, a1 и n.

ВверхВниз   Решение


Бумажный прямоугольный треугольник перегнули по прямой так, что вершина прямого угла совместилась с другой вершиной.
  а) В каком отношении делятся диагонали полученного четырёхугольника их точкой пересечения?
  б) Полученный четырёхугольник разрезали по диагонали, выходящей из третьей вершины исходного треугольника. Найти площадь наименьшего образовавшегося куска бумаги.

ВверхВниз   Решение


Старый калькулятор I. а) Предположим, что мы хотим найти $ \sqrt[3]{x}$ (x > 0) на калькуляторе, который кроме четырех обычных арифметических действий умеет находить $ \sqrt{x}$. Рассмотрим следующий алгоритм. Строится последовательность чисел {yn}, в которой y0 — произвольное положительное число, например, y0 = $ \sqrt{\sqrt{x}}$, а остальные элементы определяются соотношением

yn + 1 = $\displaystyle \sqrt{\sqrt{x\,y_n}}$        (n $\displaystyle \geqslant$ 0).

Докажите, что

$\displaystyle \lim\limits_{n\to\infty}^{}$yn = $\displaystyle \sqrt[3]{x}$.


б) Постройте аналогичный алгоритм для вычисления корня пятой степени.

ВверхВниз   Решение


Старый калькулятор II. Производная функции ln x при x = 1 равна 1. Отсюда

$\displaystyle \lim\limits_{x\to0}^{}$$\displaystyle {\dfrac{\ln(1+x)}{x}}$ = $\displaystyle \lim\limits_{x\to0}^{}$$\displaystyle {\dfrac{\ln(1+x)-\ln1}{(1+x)-1}}$ = 1.

Воспользуйтесь этим фактом для приближенного вычисления натурального логарифма числа N. Как и в задаче 9.51 , разрешается использовать стандартные арифметические действия и операцию извлечения квадратного корня.

ВверхВниз   Решение


Метод итераций. Для того, чтобы приближенно решить уравнение, допускающее запись f (x) = x, применяется метод итераций. Сначала выбирается некоторое число x0, а затем строится последовательность {xn} по правилу xn + 1 = f (xn) (n $ \geqslant$ 0). Докажите, что если эта последовательность имеет предел x* = $ \lim\limits_{n\to\infty}^{}$xn, и функция f (x) непрерывна, то этот предел является корнем исходного уравнения: f (x*) = x*.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]      



Задача 61301  (#09.050)

Тема:   [ Рекуррентные соотношения (прочее) ]
Сложность: 4
Классы: 8,9,10

Зафиксируем числа a0 и a1. Построим последовательность {an} в которой

an + 1 = $\displaystyle {\frac{a_n+a_{n-1}}{2}}$        (n $\displaystyle \geqslant$ 1).

Выразите an через a0, a1 и n.

Прислать комментарий     Решение

Задача 61302  (#09.051)

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Предел последовательности, сходимость ]
Сложность: 4-
Классы: 10,11

Старый калькулятор I. а) Предположим, что мы хотим найти $ \sqrt[3]{x}$ (x > 0) на калькуляторе, который кроме четырех обычных арифметических действий умеет находить $ \sqrt{x}$. Рассмотрим следующий алгоритм. Строится последовательность чисел {yn}, в которой y0 — произвольное положительное число, например, y0 = $ \sqrt{\sqrt{x}}$, а остальные элементы определяются соотношением

yn + 1 = $\displaystyle \sqrt{\sqrt{x\,y_n}}$        (n $\displaystyle \geqslant$ 0).

Докажите, что

$\displaystyle \lim\limits_{n\to\infty}^{}$yn = $\displaystyle \sqrt[3]{x}$.


б) Постройте аналогичный алгоритм для вычисления корня пятой степени.

Прислать комментарий     Решение

Задача 61303  (#09.052)

Темы:   [ Показательные функции и логарифмы (прочее) ]
[ Теоремы Тейлора и приближения функций ]
Сложность: 4
Классы: 10,11

Старый калькулятор II. Производная функции ln x при x = 1 равна 1. Отсюда

$\displaystyle \lim\limits_{x\to0}^{}$$\displaystyle {\dfrac{\ln(1+x)}{x}}$ = $\displaystyle \lim\limits_{x\to0}^{}$$\displaystyle {\dfrac{\ln(1+x)-\ln1}{(1+x)-1}}$ = 1.

Воспользуйтесь этим фактом для приближенного вычисления натурального логарифма числа N. Как и в задаче 9.51 , разрешается использовать стандартные арифметические действия и операцию извлечения квадратного корня.

Прислать комментарий     Решение

Задача 61304  (#09.053)

Темы:   [ Предел последовательности, сходимость ]
[ Непрерывные функции (общие свойства) ]
Сложность: 3
Классы: 10,11

Метод итераций. Для того, чтобы приближенно решить уравнение, допускающее запись f (x) = x, применяется метод итераций. Сначала выбирается некоторое число x0, а затем строится последовательность {xn} по правилу xn + 1 = f (xn) (n $ \geqslant$ 0). Докажите, что если эта последовательность имеет предел x* = $ \lim\limits_{n\to\infty}^{}$xn, и функция f (x) непрерывна, то этот предел является корнем исходного уравнения: f (x*) = x*.

Прислать комментарий     Решение

Задача 61305  (#09.054)

Темы:   [ Числовые последовательности (прочее) ]
[ Итерации ]
Сложность: 3
Классы: 8,9,10

Геометрической интерпретацией итерационного процесса служит итерационная ломаная. Для ее построения на плоскости Oxy рисуется график функции f(x) и проводится биссектриса координатного угла — прямая y=x. Затем на графике функции отмечаются точки A0(x0,f(x0)), A1(x1,f(x1)),..., An(xn,f(xn)),... а на биссектрисе координатного угла — точки B0(x0,x0), B1(x1,x1),..., Bn(xn,xn),... Ломаная B0A0B1A1... BnAn... называется итерационной.
Постройте итерационные ломаные для следующих данных:
а) f (x) = 1 + $ {\dfrac{x}{2}}$,    x0 = 0, x0 = 8;
б) f (x) = $ {\dfrac{1}{x}}$,    x0 = 2;
в) f (x) = 2x - 1,    x0 = 0, x0 = 1, 125;
г) f (x) = - $ {\dfrac{3x}{2}}$ + 6,     x0 = $ {\dfrac{5}{2}}$;
д) f (x) = x2 + 3x - 3,    x0 = 1, x0 = 0, 99, x0 = 1, 01;
е) f (x) = $ \sqrt{1+x}$,    x0 = 0, x0 = 8;
ж) f (x) = $ {\dfrac{x^3}{3}}$ - $ {\dfrac{5x^2}{2}}$ + $ {\dfrac{25x}{6}}$ + 3,     x0 = 3.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .