Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Доказать, что любой несамопересекающийся пятиугольник лежит по одну сторону от хотя бы одной своей стороны.

Вниз   Решение


Автор: Ивлев Б.М.

Каждая из девяти прямых разбивает квадрат на два четырёхугольника, площади которых относятся как 2 : 3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.

ВверхВниз   Решение


Периметр выпуклого четырехугольника равен 4. Докажите, что его площадь не превосходит 1.

ВверхВниз   Решение


Дан многочлен  x(x + 1)(x + 2)(x + 3).  Найти его наименьшее значение.

ВверхВниз   Решение


Автор: Фомин С.В.

Из листа клетчатой бумаги размером 29×29 клеточек вырезали 99 квадратиков 2×2 (режут по линиям).
Доказать, что из оставшейся части листа можно вырезать ещё хотя бы один такой же квадратик.

ВверхВниз   Решение


Натуральное число A при делении на 1981 дало в остатке 35, при делении на 1982 оно дало в остатке также 35. Каков остаток от деления числа A на 14?

ВверхВниз   Решение


Найдите все натуральные числа, не представимые в виде разности квадратов каких-либо натуральных чисел.

ВверхВниз   Решение


На продолжениях сторон CA и AB треугольника ABC за точки A и B соответственно отложены отрезки AE = BC и BF = AC. Окружность касается отрезка BF в точке N, стороны BC и продолжения стороны AC за точку C. Точка M – середина отрезка EF. Докажите, что прямая MN параллельна биссектрисе угла A.

ВверхВниз   Решение


Пусть ABCD — выпуклый четырехугольник, причем  AB + BD $ \leq$ AC + CD. Докажите, что AB < AC.

ВверхВниз   Решение


Автор: Рожкова М.

В неравнобедренном треугольнике ABC проведены высота из вершины A и биссектрисы из двух других вершин.
Докажите, что описанная окружность треугольника, образованного этими тремя прямыми, касается биссектрисы, проведённой из вершины A.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]      



Задача 64699  (#8.1)

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

Автор: Рожкова М.

В неравнобедренном треугольнике ABC проведены высота из вершины A и биссектрисы из двух других вершин.
Докажите, что описанная окружность треугольника, образованного этими тремя прямыми, касается биссектрисы, проведённой из вершины A.

Прислать комментарий     Решение

Задача 64734  (#9.1)

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Неравенства для углов треугольника ]
Сложность: 3
Классы: 8,9,10

Для каждой вершины треугольника ABC нашли угол между высотой и биссектрисой, проведёнными из этой вершины. Оказалось, что эти углы в вершинах A и B равны друг другу и меньше, чем угол в вершине C. Чему равен угол C треугольника?

Прислать комментарий     Решение

Задача 64742  (#10.1)

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Теорема Паскаля ]
[ Формула Эйлера ]
[ Длины сторон, высот, медиан и биссектрис ]
Сложность: 4-
Классы: 9,10,11

Пусть O, I – центры описанной и вписанной окружностей прямоугольного треугольника; R, r – радиусы этих окружностей; J – точка, симметричная вершине прямого угла относительно I. Найдите OJ.

Прислать комментарий     Решение

Задача 65002  (#1)

Темы:   [ Отрезок внутри треугольника меньше наибольшей стороны ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 3
Классы: 8,9

Существует ли треугольник, в котором одна сторона равна какой-то из его высот, другая – какой-то из биссектрис, а третья – какой-то из медиан?

Прислать комментарий     Решение

Задача 64700  (#8.2)

Тема:   [ ГМТ (прочее) ]
Сложность: 4-
Классы: 8,9

Даны две точки A и B. Найдите геометрическое место таких точек C, что точки A, B и C можно накрыть кругом единичного радиуса.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .