ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Внутри треугольника ABC взята точка P так, что ∠ABP = ∠ACP, а ∠CBP = ∠CAP. Докажите, что P – точка пересечения высот треугольника ABC. Окружность делит каждую из сторон треугольника
на три равные части. Докажите, что этот треугольник правильный.
Точки D и E делят стороны AC и AB правильного
треугольника ABC в отношениях
AD : DC = BE : EA = 1 : 2.
Прямые BD и CE пересекаются в точке O. Докажите, что
Докажите, что произведение всех целых чисел от 21917 + 1 до 21991 – 1 включительно не есть квадрат целого числа. Пусть m, n и k – натуральные числа, причём m > n. Какое из двух чисел больше: (В каждом выражении k знаков квадратного корня, m и n чередуются.) В вершинах квадрата сидят четыре кузнечика. Они прыгают в произвольном порядке, но не одновременно. Каждый кузнечик прыгает в такую точку, которая симметрична точке, в которой он находился до прыжка, относительно центра тяжести трёх других кузнечиков. Может ли в какой-то момент один кузнечик приземлиться на другого? (Кузнечики точечные.) а) Докажите, что если
a + ha = b + hb = c + hc, то
треугольник ABC правильный.
В квадрат вписано 1993 различных правильных треугольника (треугольник
вписан, если три его вершины лежат на сторонах квадрата). Докажите, что если точка пересечения высот остроугольного
треугольника делит высоты в одном и том же отношении, то треугольник
правильный.
{an} – последовательность чисел между 0 и 1, в которой следом за x идёт 1 – |1 – 2x|. Дан угол с вершиной O и внутри него точка A. Рассмотрим такие точки M, N на разных сторонах данного угла, что углы MAO и OAN равны. Для каждого из девяти натуральных чисел n,2n,3n,...,9n выписали на доску первую слева цифру в его десятичной записи. При этом n выбрали так, чтобы среди девяти выписанных цифр количество различных цифр было как можно меньше. Чему равно это количество? Найдите наибольшее натуральное n, обладающее следующим свойством: для любого простого нечетного p, меньшего n, разность n−p также является простым числом. |
Страница: 1 2 >> [Всего задач: 7]
Найдите наибольшее натуральное n, обладающее следующим свойством: для любого простого нечетного p, меньшего n, разность n−p также является простым числом.
Докажите, что из любого выпуклого четырёхугольника можно вырезать три его копии вдвое меньшего размера.
Для каждого из девяти натуральных чисел n,2n,3n,...,9n выписали на доску первую слева цифру в его десятичной записи. При этом n выбрали так, чтобы среди девяти выписанных цифр количество различных цифр было как можно меньше. Чему равно это количество?
В белом клетчатом квадрате 100×100 закрашено чёрным несколько клеток (не обязательно соседних). В каждой горизонтали или вертикали, где есть чёрные клетки, их количество нечётно, так что одна из клеток – средняя по счёту. Все чёрные клетки, средние по горизонтали, стоят в разных вертикалях. Все чёрные клетки, средние по вертикали, стоят в разных горизонталях.
Два треугольника пересекаются по шестиугольнику, который отсекает от них 6 маленьких треугольников. Радиусы вписанных окружностей этих шести треугольников равны.
Страница: 1 2 >> [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке