ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Доказать, что для любого натурального n справедливо соотношение: |
Страница: << 156 157 158 159 160 161 162 >> [Всего задач: 1982]
Можно ли на бесконечной клетчатой плоскости расставить бесконечное количество шахматных коней (не более одного коня в клетку) так, чтобы каждый конь бил ровно 5 других?
В треугольнике ABC с прямым углом C провели высоту CH. Окружность, проходящая через точки C и H, повторно пересекает отрезки AC, CB и BH в точках Q, P и R соответственно. Отрезки HP и CR пересекаются в точке T. Что больше: площадь треугольника CPT или сумма площадей треугольников CQH и HTR?
Кусок сыра массой 1 кг разрезали на n⩾ кусков массами меньше 600 г. Оказалось, что их нельзя разбить на две кучки так, чтобы масса каждой кучки была не меньше 400 г, но не больше 600 г (кучка может состоять из одного или нескольких кусков). Докажите, что найдутся три таких куска, что суммарная масса любых двух из них больше 600 г.
Пирамида, все боковые рёбра которой наклонены к плоскости основания
под углом
Найти объём правильной четырёхугольной пирамиды, стороны основания которой a, а плоские углы при вершине равны углам наклона боковых рёбер к плоскости основания.
Страница: << 156 157 158 159 160 161 162 >> [Всего задач: 1982]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке