ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Вычислить с пятью десятичными знаками (то есть с точностью до 0,00001) произведение:  

   Решение

Задачи

Страница: << 202 203 204 205 206 207 208 >> [Всего задач: 1957]      



Задача 76455

Тема:   [ Разложение на множители ]
Сложность: 4-
Классы: 8,9

Разложить на целые рациональные множители выражение  a10 + a5 + 1.

Прислать комментарий     Решение

Задача 76456

Темы:   [ Свойства коэффициентов многочлена ]
[ Четность и нечетность ]
[ Целочисленные и целозначные многочлены ]
[ Арифметика остатков (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Даны два многочлена от переменной x с целыми коэффициентами. Произведение их есть многочлен от переменной x с чётными коэффициентами, не все из которых делятся на 4. Доказать, что в одном из многочленов все коэффициенты чётные, а в другом – хоть один нечётный.

Прислать комментарий     Решение

Задача 76492

Тема:   [ Разложение на множители ]
Сложность: 4-
Классы: 8,9

Найти целое число a, при котором  (xa)(x – 10) + 1  разлагается в произведение  (x + b)(x + c)  двух множителей с целыми b и c.

Прислать комментарий     Решение

Задача 76535

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Классическая комбинаторика (прочее) ]
[ Проективная плоскость с конечным числом точек ]
Сложность: 4-
Классы: 10,11

В городе 57 автобусных маршрутов. Известно, что:
  1) с каждой остановки на любую другую остановку можно попасть без пересадки;
  2) для каждой пары маршрутов найдётся, и притом только одна, остановка, на которой можно пересесть с одного из этих маршрутов на другой;
  3) на каждом маршруте не менее трёх остановок.
Сколько остановок имеет каждый из 57 маршрутов?

Прислать комментарий     Решение

Задача 76542

Темы:   [ Приближения чисел ]
[ Произведения и факториалы ]
Сложность: 4-
Классы: 10,11

Вычислить с пятью десятичными знаками (то есть с точностью до 0,00001) произведение:  

Прислать комментарий     Решение

Страница: << 202 203 204 205 206 207 208 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .