ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан остроугольный треугольник ABC. На сторонах AB и BC во внешнюю сторону построены равные прямоугольники ABMN и LBCK так, что AB = KC. Даны многочлен P(x) и такие числа a1, a2, a3, b1, b2, b3, что a1a2a3 ≠ 0. Оказалось, что P(a1x + b1) + P(a2x + b2) = P(a3x + b3) для любого действительного x. Докажите, что P(x) имеет хотя бы один действительный корень. Клетчатая плоскость раскрашена в шахматном порядке в чёрный и белый цвета. Затем белые клетки снова раскрашены в красный и синий цвета так, чтобы клетки, соседние по углу, были разноцветными. Пусть l – прямая, не параллельная сторонам клеток. Для каждого отрезка I, параллельного l, посчитаем разность сумм длин его красных и синих участков. Докажите, что существует число C (зависящее только от прямой l) такое, что все полученные разности не превосходят C. Два игрока по очереди проводят диагонали в правильном (2n+1)-угольнике (n > 1). Разрешается проводить диагональ, если она пересекается (по внутренним точкам) с чётным числом ранее проведённых диагоналей (и не была проведена раньше). Проигрывает игрок, который не может сделать очередной ход. Кто выиграет при правильной игре?
В кинотеатре семь рядов по 10 мест каждый. Группа из 50 детей сходила на
утренний сеанс, а потом на вечерний. Покажите, как разрезать фигуру, изображенную на верхнем рисунке, на три равные части и сложить из этих частей правильный шестиугольник, изображенный на нижнем рисунке. Оставлять дырки и накладывать части друг на друга нельзя.
Аудитория имеет форму правильного шестиугольника со стороной 3 м. В каждом углу установлен храпометр, определяющий число спящих студентов на расстоянии, не превышающем 3 м. Сколько всего спящих студентов в аудитории, если сумма показаний храпометров равна 7? Офеня купил на оптовом рынке партию ручек и предлагает покупателям либо одну ручку за 5 рублей, либо три ручки за 10 рублей. От каждого покупателя Офеня получает одинаковую прибыль. Какова оптовая цена ручки? |
Страница: << 205 206 207 208 209 210 211 >> [Всего задач: 1957]
Даны уравнения ax² + bx + c = 0 (1) и – ax² + bx + c (2). Доказать, что если x1 и x2 – соответственно какие-либо корни уравнений (1) и (2), то найдётся такой корень x3 уравнения ½ ax² + bx + c, что либо x1 ≤ x3 ≤ x2, либо x1 ≥ x3 ≥ x2.
Пусть x0 = 109,
xn =
На бесконечной шахматной доске стоит конь. Найти все клетки, куда он может попасть за 2n ходов.
План города представляет собой плоскость, разбитую на одинаковые правильные треугольники. Стороны треугольников – шоссейные дороги, а вершины треугольников – перекрестки. Из точек A и B, расположенных на одной дороге (стороне треугольника), одновременно в одном направлении с одинаковыми скоростями выезжают две машины. Доехав до любого перекрёстка, каждая машина может или продолжить свое движение в том же направлении, или же повернуть на 120° вправо или влево. Могут ли машины встретиться?
На плоскости даны две прямые, пересекающиеся под острым углом. В направлении одной из прямых производится сжатие с коэффициентом 1/2. Доказать, что найдется точка, расстояние от которой до точки пересечения прямых увеличится.
Страница: << 205 206 207 208 209 210 211 >> [Всего задач: 1957]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке