Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Дан остроугольный треугольник ABC. На сторонах AB и BC во внешнюю сторону построены равные прямоугольники ABMN и LBCK так, что  AB = KC.
Докажите, что прямые AL, NK и MC пересекаются в одной точке.

Вниз   Решение


Даны многочлен P(x) и такие числа  a1, a2, a3, b1, b2, b3,  что  a1a2a3 ≠ 0.  Оказалось, что  P(a1x + b1) + P(a2x + b2) = P(a3x + b3)  для любого действительного x. Докажите, что P(x) имеет хотя бы один действительный корень.

ВверхВниз   Решение


Клетчатая плоскость раскрашена в шахматном порядке в чёрный и белый цвета. Затем белые клетки снова раскрашены в красный и синий цвета так, чтобы клетки, соседние по углу, были разноцветными. Пусть l – прямая, не параллельная сторонам клеток. Для каждого отрезка I, параллельного l, посчитаем разность сумм длин его красных и синих участков. Докажите, что существует число C (зависящее только от прямой l) такое, что все полученные разности не превосходят C.

ВверхВниз   Решение


Автор: Сухов К.

Два игрока по очереди проводят диагонали в правильном (2n+1)-угольнике  (n > 1).  Разрешается проводить диагональ, если она пересекается (по внутренним точкам) с чётным числом ранее проведённых диагоналей (и не была проведена раньше). Проигрывает игрок, который не может сделать очередной ход. Кто выиграет при правильной игре?

ВверхВниз   Решение


В кинотеатре семь рядов по 10 мест каждый. Группа из 50 детей сходила на утренний сеанс, а потом на вечерний.
Докажите, что найдутся двое детей, которые на утреннем сеансе сидели в одном ряду и на вечернем тоже сидели в одном ряду.

ВверхВниз   Решение


Покажите, как разрезать фигуру, изображенную на верхнем рисунке, на три равные части и сложить из этих частей правильный шестиугольник, изображенный на нижнем рисунке. Оставлять дырки и накладывать части друг на друга нельзя.




ВверхВниз   Решение


Аудитория имеет форму правильного шестиугольника со стороной 3 м. В каждом углу установлен храпометр, определяющий число спящих студентов на расстоянии, не превышающем 3 м. Сколько всего спящих студентов в аудитории, если сумма показаний храпометров равна 7?

ВверхВниз   Решение


Автор: Саблин А.

Офеня купил на оптовом рынке партию ручек и предлагает покупателям либо одну ручку за 5 рублей, либо три ручки за 10 рублей. От каждого покупателя Офеня получает одинаковую прибыль. Какова оптовая цена ручки?

Вверх   Решение

Задачи

Страница: << 205 206 207 208 209 210 211 >> [Всего задач: 1957]      



Задача 77989

Темы:   [ Исследование квадратного трехчлена ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 4-
Классы: 9,10,11

Даны уравнения  ax² + bx + c = 0   (1)    и – ax² + bx + c   (2).     Доказать, что если x1 и x2 – соответственно какие-либо корни уравнений (1) и (2), то найдётся такой корень x3 уравнения  ½ ax² + bx + c,  что либо  x1x3x2,  либо  x1x3x2.

Прислать комментарий     Решение

Задача 77993

Темы:   [ Рекуррентные соотношения ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 11

Пусть  x0 = 109xn = .  Доказать, что  0 < x36 < 10–9.

Прислать комментарий     Решение

Задача 77994

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
[ Шахматная раскраска ]
Сложность: 4-
Классы: 8,9,10

На бесконечной шахматной доске стоит конь. Найти все клетки, куда он может попасть за 2n ходов.

Прислать комментарий     Решение

Задача 78011

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Системы точек и отрезков ]
[ Инварианты ]
Сложность: 4-
Классы: 8,9

План города представляет собой плоскость, разбитую на одинаковые правильные треугольники. Стороны треугольников – шоссейные дороги, а вершины треугольников – перекрестки. Из точек A и B, расположенных на одной дороге (стороне треугольника), одновременно в одном направлении с одинаковыми скоростями выезжают две машины. Доехав до любого перекрёстка, каждая машина может или продолжить свое движение в том же направлении, или же повернуть на 120° вправо или влево. Могут ли машины встретиться?

Прислать комментарий     Решение

Задача 78040

Темы:   [ Аффинные преобразования и их свойства ]
[ Аналитический метод в геометрии ]
Сложность: 4-
Классы: 11

На плоскости даны две прямые, пересекающиеся под острым углом. В направлении одной из прямых производится сжатие с коэффициентом 1/2. Доказать, что найдется точка, расстояние от которой до точки пересечения прямых увеличится.
Прислать комментарий     Решение


Страница: << 205 206 207 208 209 210 211 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .