ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Как расположены плоскости симметрии ограниченного тела, если оно имеет две оси вращения? (Осью вращения тела называется прямая, после поворота вокруг которой на любой угол тело совмещается само с собой.)

   Решение

Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 1957]      



Задача 76536

Темы:   [ Свойства коэффициентов многочлена ]
[ Производящие функции ]
Сложность: 3
Классы: 8,9

Определить коэффициенты, которые будут стоять при x17 и x18 после раскрытия скобок и приведения подобных членов в выражении

(1 + x5 + x7)20.

Прислать комментарий     Решение

Задача 76537

Темы:   [ Теорема Безу. Разложение на множители ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9

Какой остаток даёт  x + x³ + x9 + x27 + x81 + x243  при делении на  x – 1?
Прислать комментарий     Решение


Задача 77886

Тема:   [ Поворот и винтовое движение ]
Сложность: 3
Классы: 10,11

Как расположены плоскости симметрии ограниченного тела, если оно имеет две оси вращения? (Осью вращения тела называется прямая, после поворота вокруг которой на любой угол тело совмещается само с собой.)
Прислать комментарий     Решение


Задача 77901

Темы:   [ Взвешивания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Имеется 555 гирь весом: 1 г, 2 г, 3 г, 4 г,...555 г. Разложить их на 3 равные по весу кучи.
Прислать комментарий     Решение


Задача 77905

Тема:   [ Тригонометрические неравенства ]
Сложность: 3
Классы: 10,11

Пусть A — произвольный угол, B и C — острые углы. Всегда ли существует такой угол X, что

sin X = $\displaystyle {\frac{\sin B\sin C}{1-\cos A\cos B\cos C}}$?

(Из `` Воображаемой геометрии'' Н. И. Лобачевского).
Прислать комментарий     Решение

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .