ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пять человек играют несколько партий в домино (два на два) так, что каждый играющий имеет каждого из остальных один раз партнёром и два раза противником. Найти количество сыгранных партий и все способы распределения играющих.

   Решение

Задачи

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 1957]      



Задача 78030

Темы:   [ ГМТ с ненулевой площадью ]
[ Четырехугольники ]
Сложность: 3
Классы: 9

Дан четырехугольник ABCD. На стороне AB взята точка K, на стороне BC &8212; точка L, на стороне CD — точка M и на стороне AD — точка N, так, что KB = BL = a, MD = DN = b. Пусть KL $ \nparallel$ MN. Найти геометрическое место точек пересечения прямых KL и MN при изменении a и b.
Прислать комментарий     Решение


Задача 78032

Тема:   [ Выпуклые и невыпуклые фигуры (прочее) ]
Сложность: 3
Классы: 9

Какие выпуклые фигуры могут содержать прямую?
Прислать комментарий     Решение


Задача 78044

Темы:   [ Вневписанные окружности ]
[ Неравенства для углов треугольника ]
Сложность: 3
Классы: 8,9

Дан $ \Delta$ABC. Центры вневписанных окружностей O1, O2 и O3 соединены прямыми. Доказать, что $ \Delta$O1O2O3 — остроугольный.
Прислать комментарий     Решение


Задача 78055

Темы:   [ Перебор случаев ]
[ Турниры и турнирные таблицы ]
Сложность: 3
Классы: 10,11

Пять человек играют несколько партий в домино (два на два) так, что каждый играющий имеет каждого из остальных один раз партнёром и два раза противником. Найти количество сыгранных партий и все способы распределения играющих.

Прислать комментарий     Решение

Задача 78061

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9

Найти все двузначные числа, сумма цифр которых не меняется при умножении числа на 2, 3, 4, 5, 6, 7, 8 и 9.

Прислать комментарий     Решение

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .