ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дано число  A = ,  где n и m – натуральные числа, не меньшие 2.
Доказать, что существует такое натуральное k, что  A = .

   Решение

Задачи

Страница: << 219 220 221 222 223 224 225 >> [Всего задач: 1957]      



Задача 79246

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Итерации ]
[ Индукция (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 4-
Классы: 9,10,11

С натуральным числом K производится следующая операция: оно представляется в виде произведения простых сомножителей  K = p1p2...pn;  затем вычисляется сумма  p1 + p2 + ... + pn + 1.  С полученным числом производится то же самое, и т.д.
Доказать, что образующаяся последовательность, начиная с некоторого номера, будет периодической.

Прислать комментарий     Решение

Задача 79259

Темы:   [ Степень вершины ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Шахматные доски и шахматные фигуры ]
[ Процессы и операции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10

На бесконечной шахматной доске проведена замкнутая несамопересекающаяся ломаная, проходящая по сторонам клеток. Внутри ломаной оказалось k чёрных клеток. Какую наибольшую площадь может иметь фигура, ограниченная этой ломаной?

Прислать комментарий     Решение

Задача 79260

Темы:   [ Квадратные уравнения. Формула корней ]
[ Доказательство тождеств. Преобразования выражений ]
[ Рекуррентные соотношения ]
Сложность: 4-
Классы: 9,10,11

Дано число  A = ,  где M – натуральное число большее 2.
Доказать, что найдётся такое натуральное k, что  A = .

Прислать комментарий     Решение

Задача 79263

Темы:   [ Квадратные уравнения. Формула корней ]
[ Доказательство тождеств. Преобразования выражений ]
[ Рекуррентные соотношения ]
Сложность: 4-
Классы: 8,9,10

Дано число  A = ,  где n и m – натуральные числа, не меньшие 2.
Доказать, что существует такое натуральное k, что  A = .

Прислать комментарий     Решение

Задача 79270

Темы:   [ Поворот (прочее) ]
[ Принцип Дирихле (углы и длины) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10

Две одинаковые шестерёнки имеют по 32 зубца. Их совместили и спилили одновременно 6 пар зубцов. Доказать, что одну шестерёнку можно повернуть относительно другой так, что в местах сломанных зубцов одной шестерёнки окажутся целые зубцы второй шестерёнки.
Прислать комментарий     Решение


Страница: << 219 220 221 222 223 224 225 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .