ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Страна Фарра расположена на 1 000 000 000 островов. Между некоторыми островами каждый день курсируют пароходы. Маршруты пароходов устроены так, что с каждого острова можно попасть на любой другой (возможно, за несколько дней). Шпион и майор Пронин могут совершать не более одного рейса в день на пароходе и не имеют никакой другой возможности попасть с острова на остров. Шпион не ездит на пароходе 13 числа каждого месяца, майор Пронин не суеверен и всегда знает, где находится шпион. Доказать, что майор сможет поймать шпиона (т.е. оказаться с ним на одном острове).

Вниз   Решение


Дан треугольник ABC, AD и BE — его биссектрисы. Известно, что AC > BC. Доказать, что AE > DE > BD.

Вверх   Решение

Задачи

Страница: << 176 177 178 179 180 181 182 >> [Всего задач: 1984]      



Задача 79238

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Неравенства с углами ]
Сложность: 3+
Классы: 9

Пусть на плоскости есть пять точек общего положения, то есть никакие три из них не лежат на одной прямой и никакие четыре — на одной окружности. Докажите, что среди этих точек есть две такие, что они лежат по разные стороны от окружности, проходящей через оставшиеся три точки.
Прислать комментарий     Решение


Задача 79268

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9,10

Доказать, что число 100...001, в котором  21974 + 21000 – 1  нулей, составное.

Прислать комментарий     Решение

Задача 79269

Темы:   [ Площадь. Одна фигура лежит внутри другой ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9,10

Доказать, что в круг радиуса 1 нельзя поместить без наложений два треугольника, площадь каждого из которых больше 1.
Прислать комментарий     Решение


Задача 79289

Тема:   [ Неравенства для элементов треугольника (прочее) ]
Сложность: 3+
Классы: 9,10

Дан треугольник ABC, AD и BE — его биссектрисы. Известно, что AC > BC. Доказать, что AE > DE > BD.
Прислать комментарий     Решение


Задача 79297

Темы:   [ Разные задачи на разрезания ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Геометрия на клетчатой бумаге ]
Сложность: 3+
Классы: 8,9,10

На шахматной доске размером 8×8 отмечены 64 точки — центры всех клеток. Можно ли отделить все точки друг от друга, проведя 13 прямых, не проходящих через эти точки?
Прислать комментарий     Решение


Страница: << 176 177 178 179 180 181 182 >> [Всего задач: 1984]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .