ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найти все пары целых чисел  (x, y),  удовлетворяющих уравнению  x² = y² + 2y + 13.

   Решение

Задачи

Страница: << 126 127 128 129 130 131 132 >> [Всего задач: 1957]      



Задача 79395

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 9,10

Дано число, имеющее нечётное число разрядов. Доказать, что одну из его цифр можно вычеркнуть так, что в полученном числе количество семёрок на чётных местах будет равно количеству семёрок на нечётных местах.

Прислать комментарий     Решение

Задача 79412

Темы:   [ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3+
Классы: 8,9,10

Числа 1, 2, 3, ..., 1982 возводятся в квадрат и записываются подряд в некотором порядке.
Может ли полученное многозначное число быть полным квадратом?

Прислать комментарий     Решение

Задача 79413

Темы:   [ Две пары подобных треугольников ]
[ Пятиугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 9

Каждая диагональ выпуклого пятиугольника параллельна одной из его сторон.
Доказать, что отношение каждой диагонали к соответствующей стороне равно  

Прислать комментарий     Решение

Задача 79415

Темы:   [ Арифметика остатков (прочее) ]
[ Деление с остатком ]
Сложность: 3+
Классы: 8,9,10

Найти все натуральные числа n, для которых число  n·2n + 1  кратно 3.

Прислать комментарий     Решение

Задача 79425

Темы:   [ Уравнения в целых числах ]
[ Четность и нечетность ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Найти все пары целых чисел  (x, y),  удовлетворяющих уравнению  x² = y² + 2y + 13.

Прислать комментарий     Решение

Страница: << 126 127 128 129 130 131 132 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .