Страница:
<< 129 130 131 132
133 134 135 >> [Всего задач: 1957]
|
|
Сложность: 3+ Классы: 9,10
|
Решите в целых числах уравнение 19x³ − 84y² = 1984.
Числа a1, a2, ..., a1985 представляют собой переставленные в некотором порядке числа 1, 2, ..., 1985. Каждое число ak умножается на его номер k, а затем среди полученных 1985 произведений выбирается наибольшее. Доказать, что оно не меньше, чем 993².
|
|
Сложность: 3+ Классы: 8,9,10
|
Найти все значения x, y и z, удовлетворяющие равенству $\sqrt{x-y+z} = \sqrt{x} - \sqrt{y} + \sqrt{z}$.
Докажите, что ни для каких чисел x, y, t не могут одновременно выполняться три неравенства: |x| < |y − t|, |y| < |t − x|, |t| < |x − y|.
|
|
Сложность: 3+ Классы: 7,8,9
|
Три гнома живут в разных домах на плоскости и ходят со скоростями 1, 2 и 3 км/ч
соответственно. Какое место для ежедневных встреч нужно им выбрать, чтобы сумма
времён, необходимых каждому из гномов на путь от своего дома до этого места
(по прямой), была наименьшей?
Страница:
<< 129 130 131 132
133 134 135 >> [Всего задач: 1957]