Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

Докажите, что произведение всех целых чисел от  21917 + 1  до  21991 – 1  включительно не есть квадрат целого числа.

Вниз   Решение


Решите уравнение  3x + 5y = 7  в целых числах.

ВверхВниз   Решение


Целые числа a, x1, x2, ..., x13 таковы, что  a = (1 + x1)(1 + x2)...(1 + x13) = (1 – x1)(1 – x2)...(1 – x13).  Докажите, что  ax1x2...x13 = 0.

ВверхВниз   Решение


На окружности взяты точки  A, C1, B, A1, C, B1 в указанном порядке.
а) Докажите, что если прямые AA1, BB1 и CC1 являются биссектрисами углов треугольника ABC, то они являются высотами треугольника A1B1C1.
б) Докажите, что если прямые AA1, BB1 и CC1 являются высотами треугольника ABC, то они являются биссектрисами углов треугольника A1B1C1.

ВверхВниз   Решение


Докажите, что число 40...09 – не полный квадрат (при любом числе нулей, начиная с 1).

ВверхВниз   Решение


а) Вписанная окружность треугольника ABC касается стороны AC в точке D, DM — ее диаметр. Прямая BM пересекает сторону AC в точке K. Докажите, что AK = DC.
б) В окружности проведены перпендикулярные диаметры AB и CD. Из точки M, лежащей вне окружности, проведены касательные к окружности, пересекающие прямую AB в точках E и H, а также прямые MC и MD, пересекающие прямую AB в точках F и K. Докажите, что EF = KH.

ВверхВниз   Решение


В прямоугольнике проведена ломаная, соседние звенья которой перпендикулярны и равны меньшей стороне прямоугольника (см. рис).
Найдите отношение сторон прямоугольника.

ВверхВниз   Решение


Незнайка не знает о существовании операций умножения и возведения в степень. Однако он хорошо освоил сложение, вычитание, деление и извлечение квадратного корня, а также умеет пользоваться скобками. Упражняясь, Незнайка выбрал три числа 20, 2 и 2 и составил выражение $\sqrt{(2+20):2}$. А может ли он, используя точно те же три числа 20, 2 и 2, составить выражение, значение которого больше 30?

ВверхВниз   Решение


На кошачьей выставке каждый посетитель погладил ровно трех кошек. При этом оказалось, что каждую кошку погладили ровно три посетителя.

Докажите, что посетителей было ровно столько же, сколько кошек.

ВверхВниз   Решение


Существует ли такое натуральное n, что для любых ненулевых цифр a и b число  anb  делится на  ab ?  (Через  x...y  обозначено число, получаемое приписыванием друг к другу десятичных записей чисел x, ..., y.)

ВверхВниз   Решение


Докажите, что число вида a0...09 – не полный квадрат (при любом числе нулей, начиная с одного; a – цифра, отличная от 0).

 

ВверхВниз   Решение


Назовём натуральное число почти квадратом, если оно равно произведению двух последовательных натуральных чисел.
Докажите, что каждый почти квадрат можно представить в виде частного двух почти квадратов.

ВверхВниз   Решение


а) Существуют ли четыре таких различных натуральных числа, что сумма каждых трёх из них есть простое число?
б) Существуют ли пять таких различных натуральных чисел, что сумма каждых трёх из них есть простое число?

ВверхВниз   Решение


Докажите, что в прямоугольном треугольнике с углом $30$ градусов одна биссектриса в два раза короче другой.

ВверхВниз   Решение


В правильном 25-угольнике проведены все диагонали. Докажите, что нет девяти диагоналей, проходящих через одну внутреннюю точку 25-угольника.

ВверхВниз   Решение


Около правильного тетраэдра ABCD описана сфера. На его гранях как на основаниях построены во внешнюю сторону правильные пирамиды ABCD', ABDC', ACDB', BCDA', вершины которых лежат на этой сфере. Найдите угол между плоскостями ABC' и ACD'.

ВверхВниз   Решение


В лес за грибами пошли 11 девочек и n мальчиков. Вместе они собрали  n² + 9n – 2  гриба, причём все они собрали поровну грибов.
Кого было больше: мальчиков или девочек?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 108053  (#1)

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
[ Средняя линия трапеции ]
Сложность: 3
Классы: 8,9

Внутри угла расположены две окружности с центрами A и B. Они касаются друг друга и двух сторон угла.
Докажите, что окружность с диаметром AB касается сторон угла.

Прислать комментарий     Решение

Задача 98113  (#2)

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3
Классы: 7,8,9

В лес за грибами пошли 11 девочек и n мальчиков. Вместе они собрали  n² + 9n – 2  гриба, причём все они собрали поровну грибов.
Кого было больше: мальчиков или девочек?

Прислать комментарий     Решение

Задача 108054  (#3)

Темы:   [ Неравенства для элементов треугольника (прочее) ]
[ Теорема синусов ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC на стороне AB выбрана точка D, отличная от B, причём  AD : DC = AB : BC.  Докажите, что угол C тупой.

Прислать комментарий     Решение

Задача 98115  (#4)

Темы:   [ Свойства модуля. Неравенство треугольника ]
[ Принцип крайнего (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3
Классы: 7,8,9

По окружности записаны 30 чисел. Каждое из этих чисел равно модулю разности двух чисел, стоящих после него по часовой стрелке. Сумма всех чисел
равна 1. Найти эти числа.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .