Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 33 задачи
Версия для печати
Убрать все задачи

Автор: Фольклор

В четырёхугольнике длины всех сторон и диагоналей меньше 1 м. Доказать, что его можно поместить в круг радиуса 0,9 м.

Вниз   Решение


Положительные числа a, b, c таковы, что  a² + b² – ab = c².  Докажите, что (a – c)(b – c) ≤ 0.

ВверхВниз   Решение


Автор: Гусаров М.

Есть три кучи камней. Разрешается к любой из них добавить столько камней, сколько есть в двух других кучах, или из любой кучи выбросить столько камней, сколько есть в двух других кучах. Например:  (12, 3, 5)  →  (12, 20, 5)  (или  (4, 3, 5)).  Можно ли, начав с куч 1993, 199 и 19, сделать одну из куч пустой?

ВверхВниз   Решение


Найдите геометрическое место таких точек X, что касательные, проведенные из X к данной окружности, имеют данную длину.

ВверхВниз   Решение


Внутри некоторого тетраэдра взяли произвольную точку X. Через каждую вершину тетраэдра провели прямую, параллельную отрезку, соединяющему X с точкой пересечения медиан противоположной грани. Докажите, что четыре полученные прямые пересекаются в одной точке.

ВверхВниз   Решение


Натуральное число увеличили на 10% и снова получили натуральное число. Могла ли при этом сумма цифр уменьшиться ровно на 10%?

ВверхВниз   Решение


Рассматривается последовательность  1, ½, ⅓, ¼, ⅕, ⅙, 1/7, ...  Существует ли арифметическая прогрессия
  а) длины 5;
  б) сколь угодно большой длины,
составленная из членов этой последовательности?

ВверхВниз   Решение


Замок обнесён круговой стеной с девятью башнями, на которых дежурят рыцари. По истечении каждого часа все они переходят на соседние башни, причём каждый рыцарь движется либо все время по часовой стрелке, либо против. За ночь каждый рыцарь успевает подежурить на каждой башне. Известно, что был час, когда на каждой башне дежурили хотя бы два рыцаря, и был час, когда ровно на пяти башнях дежурили ровно по одному рыцарю. Докажите, что был час, когда на одной из башен вообще не было рыцарей.

ВверхВниз   Решение


Для каждого из девяти натуральных чисел n,2n,3n,...,9n выписали на доску первую слева цифру в его десятичной записи. При этом n выбрали так, чтобы среди девяти выписанных цифр количество различных цифр было как можно меньше. Чему равно это количество?

ВверхВниз   Решение


а) Существуют ли два равных семиугольника, все вершины которых совпадают, но никакие стороны не совпадают?
б) А три таких семиугольника?

ВверхВниз   Решение


Последовательность определяется так: первые её члены – 1, 2, 3, 4, 5. Далее каждый следующий (начиная с 6-го) равен произведению всех предыдущих членов минус 1. Докажите, что сумма квадратов первых 70 членов последовательности равна их произведению.

ВверхВниз   Решение


Для любого натурального числа n, большего единицы, квадрат отношения произведения первых n нечётных чисел к произведению первых n чётных чисел больше числа 1/4n, но меньше числа 3/8n. Докажите это.

ВверхВниз   Решение


По доске n×n прошла ладья, побывав в каждой клетке один раз, причем каждый её ход был ровно на одну клетку. Клетки занумерованы от 1 до n2 в порядке прохождения ладьи. Пусть M – максимальная разность между номерами соседних (по стороне) клеток. Каково наименьшее возможное значение M?

ВверхВниз   Решение


В ряд выписаны несколько нулей и единиц. Рассмотрим пары цифр в этом ряду (не только соседних), где левая цифра равна 1, а правая 0. Пусть среди этих пар ровно M таких, что между единицей и нулем этой пары стоит чётное число цифр, и ровно N таких, что между единицей и нулем этой пары стоит нечётное число цифр. Докажите, что  M ≥ N.

ВверхВниз   Решение


На каждой клетке доски 10×10 стоит фишка. Разрешается выбрать диагональ, на которой стоит чётное число фишек, и снять с неё любую фишку.
Какое наибольшее число фишек можно убрать с доски такими операциями?

ВверхВниз   Решение


В прямоугольной системе координат (с одинаковым масштабом по осям x и y) нарисовали график функции  y=f(x).  Затем ось ординат и все отметки на оси абсцисс стёрли. Предложите способ, как с помощью карандаша, циркуля и линейки восстановить ось ординат, если
  а)  f(x)=3x;
  б)  f(x) = logax,  где  a > 1  – неизвестное число.

ВверхВниз   Решение


В выпуклом 2009-угольнике проведены все диагонали. Прямая пересекает 2009-угольник, но не проходит через его вершины.
Докажите, что прямая пересекает чётное число диагоналей.

ВверхВниз   Решение


Найдите геометрическое место середин хорд данной окружности, проходящих через данную точку.

ВверхВниз   Решение


В некотором государстве человек может быть зачислен в полицию только в том случае, если он выше ростом чем 80% (или больше) его соседей. Чтобы доказать свое право на зачисление в полицию, человек сам называет число R (радиус), после чего его "соседями" считаются все, кто живёт на расстоянии меньше R от него (число соседей, разумеется, должно быть не нулевое). В этом же государстве человек освобождается от службы в армии только в том случае, если он ниже ростом, чем 80% (или больше) его соседей. Определение "соседей" аналогично; человек сам называет число r (радиус) и т. д., причём R и r не обязательно совпадают. Может ли случиться, что не менее 90% населения имеют право на зачисление в полицию и одновременно не менее 90% населения освобождены от армии? (Каждый человек проживает в определенной точке плоскости.)

ВверхВниз   Решение


Окружность касается стороны BC треугольника ABC в точке M, а продолжений сторон AB и AC — в точках P и Q соответственно. Вписанная окружность треугольника ABC касается стороны BC в точке K, а стороны AB — в точке L. Докажите, что:

а) отрезок AP равен полупериметру p треугольника ABC;

б) BM = CK;

в) BC = PL.

ВверхВниз   Решение


Пусть a^b обозначает число ab. В выражении  7^7^7^7^7^7^7  надо расставить скобки, чтобы определить порядок действий (всего будет 5 пар скобок).
Можно ли расставить эти скобки двумя разными способами так, чтобы получилось одно и то же число?

ВверхВниз   Решение


В компанию из n человек пришёл журналист. Ему известно, что в этой компании есть человек Z, который знает всех остальных членов компании, но его не знает никто. Журналист может к каждому члену компании обратиться с вопросом: "Знаете ли вы такого-то?"
  а) Может ли журналист установить, кто из компании есть Z, задав менее n вопросов?
  б) Найдите наименьшее количество вопросов, достаточное для того, чтобы наверняка найти Z, и докажите, что меньшим числом вопросов обойтись нельзя.
(Все отвечают на вопросы правдиво. Одному человеку можно задавать несколько вопросов.)

ВверхВниз   Решение


Автор: Фольклор

a1, a2, ..., a101  – такая перестановка чисел  2, 3, ..., 102,  что ak делится на k при каждом k. Найти все такие перестановки.

ВверхВниз   Решение


Автор: Анджанс А.

ВверхВниз   Решение


Автор: Анджанс А.

  Дан выпуклый четырёхугольник ABCD. Каждая его сторона разбита на k равных частей. Точки деления, принадлежащие стороне AB, соединены прямыми с точками деления, принадлежащими стороне CD, так что первая, считая от A, точка деления соединена с первой точкой деления, считая от D, вторая, считая от A, – со второй, считая от D, и т. д. (первая серия прямых), а точки деления, принадлежащие стороне BC, аналогичным образом соединены с точками деления, принадлежащими стороне DA (вторая серия прямых). Образовалось k² маленьких четырёхугольников. Из них выбрано k четырёхугольников таким образом, что каждые два выбранных четырёхугольника разделены хотя бы одной прямой первой серии и хотя бы одной прямой второй серии.
  Доказать, что сумма площадей выбранных четырёхугольников равна  1/k SABCD.

ВверхВниз   Решение


Прямоугольник разбит на прямоугольные треугольники, граничащие друг с другом только по целым сторонам, так, что общая сторона двух треугольников всегда служит катетом одного и гипотенузой другого. Докажите, что отношение большей стороны прямоугольника к меньшей не менее 2.

ВверхВниз   Решение


Существует ли в пространстве куб, расстояния от вершин которого до данной плоскости равны 0, 1, 2, 3, 4, 5, 6, 7?

ВверхВниз   Решение


Прямоугольник разбили на несколько меньших прямоугольников. Могло ли оказаться, что для каждой пары полученных прямоугольников отрезок, соединяющий их центры, пересекает еще какой-нибудь прямоугольник?

ВверхВниз   Решение


Автор: Перлин А.

Найти все такие числа вида 2n (n натурально), что при вычёркивании первой цифры их десятичной записи снова получится степень двойки.

ВверхВниз   Решение


Найдите геометрическое место середин отрезков с концами на двух данных параллельных прямых.

ВверхВниз   Решение


а) Найдите ГМТ, равноудаленных от двух параллельных прямых.
б) Найдите ГМТ, равноудаленных от двух пересекающихся прямых.

ВверхВниз   Решение


а) Доказать, что для любых положительных чисел  x1, x2, ..., xk  (k > 3)  выполняется неравенство:

б) Доказать, что это неравенство ни для какого  k > 3  нельзя усилить, то есть доказать, что для каждого фиксированного k нельзя заменить двойку в правой части на большее число так, чтобы полученное неравенство было справедливо для любого набора из k положительных чисел.

ВверхВниз   Решение


Докажите, что существует бесконечно много таких троек чисел  n – 1,  n,  n + 1,  что:
  a) n представимо в виде суммы двух квадратов натуральных (целых положительных) чисел, а  n – 1  и  n + 1  – нет;
  б) каждое из трёх чисел представимо в виде суммы двух квадратов натуральных чисел.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 98307  (#1)

Темы:   [ Параллельность прямых и плоскостей ]
[ Уравнение плоскости ]
[ Куб ]
[ Скалярное произведение ]
[ Двоичная система счисления ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Существует ли в пространстве куб, расстояния от вершин которого до данной плоскости равны 0, 1, 2, 3, 4, 5, 6, 7?

Прислать комментарий     Решение

Задача 98308  (#2)

Темы:   [ Композиция центральных симметрий ]
[ Наибольшая или наименьшая длина ]
Сложность: 4-
Классы: 8,9,10


Кузнечик вначале сидит в точке M плоскости Oxy вне квадрата  0 ≤ x ≤ 1,  0 ≤ y ≤ 1  (координаты M – нецелые, расстояние от M до центра квадрата равно d). Кузнечик прыгает в точку, симметричную M относительно самой правой (с точки зрения кузнечика) вершины квадрата. Докажите, что за несколько таких прыжков кузнечик не сможет удалиться от центра квадрата более чем на 10d.

Прислать комментарий     Решение

Задача 98309  (#3)

Темы:   [ Симметрия помогает решить задачу ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 10,11

В равнобедренном треугольнике ABC  (AB = AC)  угол A равен α. На стороне AB взята точка D так, что  AD = AB/n.  Найдите сумму  n – 1  углов, под которыми виден отрезок AD из точек, делящих сторону BC на n равных частей:
  а) при  n = 3;
  б) при произвольном n.

Прислать комментарий     Решение

Задача 98310  (#4)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Задачи на проценты и отношения ]
[ Системы точек ]
Сложность: 5-
Классы: 9,10,11

В некотором государстве человек может быть зачислен в полицию только в том случае, если он выше ростом чем 80% (или больше) его соседей. Чтобы доказать свое право на зачисление в полицию, человек сам называет число R (радиус), после чего его "соседями" считаются все, кто живёт на расстоянии меньше R от него (число соседей, разумеется, должно быть не нулевое). В этом же государстве человек освобождается от службы в армии только в том случае, если он ниже ростом, чем 80% (или больше) его соседей. Определение "соседей" аналогично; человек сам называет число r (радиус) и т. д., причём R и r не обязательно совпадают. Может ли случиться, что не менее 90% населения имеют право на зачисление в полицию и одновременно не менее 90% населения освобождены от армии? (Каждый человек проживает в определенной точке плоскости.)

Прислать комментарий     Решение

Задача 98311  (#5)

Темы:   [ Признаки делимости на 3 и 9 ]
[ Примеры и контрпримеры. Конструкции ]
[ Тождественные преобразования ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9

Докажите, что существует бесконечно много таких троек чисел  n – 1,  n,  n + 1,  что:
  a) n представимо в виде суммы двух квадратов натуральных (целых положительных) чисел, а  n – 1  и  n + 1  – нет;
  б) каждое из трёх чисел представимо в виде суммы двух квадратов натуральных чисел.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .